• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema Com Inequação do Exponencial

Problema Com Inequação do Exponencial

Mensagempor chenz » Sáb Jun 19, 2010 17:13

Pessoal, estou com o seguinte problema e não consigo chegar ao resultado:
\left(\frac{2}{3} \right)^{2x}-\frac{13}{6}*\left(\frac{2}{3} \right)^x+1\geq0
\left(\left(\frac{2}{3} \right)^x \right)^2-\frac{13}{6}*\left(\frac{2}{3} \right)^x+1\geq0
\left(\frac{2}{3} \right)^x=y
{y}^{2}-\frac{13}{6}*y+1\geq0
Multiplicando por 6....
6*{y}^{2}-13*y+6\geq0
a=6;b=-13;c=6
\Delta={b}^{2}-4*a*c
\Delta=\left(-13 \right)^2-4*6*6
\Delta=25
\frac{13\pm5}{12}
y''=\frac{3}{2}
y'=\frac{2}{3}
x'=\left(\frac{2}{3}\right)^\frac{2}{3}
x''=\left(\frac{2}{3}\right)^\frac{3}{2}
Porém a resposta é:
x'\leq-1 e
x''\geq1

Onde estou errando? A sequencia de cálculo está correta?

Obrigado a todos....
chenz
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Mai 17, 2010 10:33
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: formado

Re: Problema Com Inequação do Exponencial

Mensagempor Molina » Sáb Jun 19, 2010 21:31

Boa noite!

Aqui está seu erro:

chenz escreveu:y''=\frac{3}{2}
y'=\frac{2}{3}
x'=\left(\frac{2}{3}\right)^\frac{2}{3}
x''=\left(\frac{2}{3}\right)^\frac{3}{2}


Os valores que você encontra são y' e y". Você está substituindo no x e não no y.

Deixe o expoente x como ele está e substitua os valores encontrados após a igualdade, na condição inicial que você mesmo deu.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Problema Com Inequação do Exponencial

Mensagempor chenz » Dom Jun 20, 2010 12:35

Obrigado Diego Molina !!!! Valeu mesmo....Não acreditei que a resposta estava na minha frete....hehehehehehe....Obrigado!!!

Cristiano Henz
chenz
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Mai 17, 2010 10:33
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?