• Anúncio Global
    Respostas
    Exibições
    Última mensagem

função dispêndio

função dispêndio

Mensagempor jmario » Qua Jun 09, 2010 09:01

As funções dipêndios são as seguintes:

Dx(px,py,r)=\frac{r\sqrt[]{Px}}{\sqrt[]{Px}+\sqrt[]{Py}}
Dy(px,py,r)=\frac{r\sqrt[]{Py}}{\sqrt[]{Px}+\sqrt[]{Py}}

Por que a razão entre os dispêndios se transforma em:
\frac{Dx(px,py,r}{Dy(px,py,r}=\frac{\sqrt[]{Px}}{\sqrt[]{Py}}

Aí se calcula a derivada dessa razão com o ln, não entendi porque usar o logarítmo natural na derivada
\sigma=\frac{d ln\left[\frac{Dx(px,py,r)}{Dy(px,py,r)}\right]}{d ln \left(\frac{Px}{Py} \right)}
Editado pela última vez por jmario em Qua Jun 09, 2010 09:21, em um total de 1 vez.
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Re: função dispêndio

Mensagempor jmario » Qua Jun 09, 2010 09:15

jmario escreveu:As funções dipêndios são as seguintes:

Dx(px,py,r)=\frac{r\sqrt[]{Px}}{\sqrt[]{Px}+\sqrt[]{Py}}
Dy(px,py,r)=\frac{r\sqrt[]{Py}}{\sqrt[]{Px}+\sqrt[]{Py}}

Por que a razão entre os dispêndios se transforma em:
\frac{Dx(px,py,r)}{Dy(px,py,r)}=\frac{\sqrt[]{Px}}{\sqrt[]{Py}}

A fórmula da elasticidade de substituição é dada por:
ES=\frac{TmgS(px,py)}{\frac{py}{px)}} \frac{d(\frac{py}{px)}}{dTmgS(px,py)}

Aí se chega nessa equação com apenas a derivada dessa razão com o ln, não entendi porque usar o logarítmo natural na derivada
\sigma=\frac{d ln\left[\frac{Dx(px,py,r)}{Dy(px,py,r)}\right]}{d ln \left(\frac{Px}{Py} \right)}


Alguém pode me ajudar
Grato
José Mario
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Re: função dispêndio

Mensagempor jmario » Qua Jun 09, 2010 09:22

jmario escreveu:
jmario escreveu:As funções dipêndios são as seguintes:

Dx(px,py,r)=\frac{r\sqrt[]{Px}}{\sqrt[]{Px}+\sqrt[]{Py}}
Dy(px,py,r)=\frac{r\sqrt[]{Py}}{\sqrt[]{Px}+\sqrt[]{Py}}

Por que a razão entre os dispêndios se transforma em:
\frac{Dx(px,py,r)}{Dy(px,py,r)}=\frac{\sqrt[]{Px}}{\sqrt[]{Py}}

A fórmula da elasticidade de substituição é dada por:
ES=\frac{TmgS(px,py)}{\frac{py}{px)}} \frac{d(\frac{py}{px)}}{dTmgS(px,py)}

Aí se chega nessa equação com apenas a derivada dessa razão com o ln, não entendi porque usar o logarítmo natural na derivada
\sigma=\frac{d ln\left[\frac{Dx(px,py,r)}{Dy(px,py,r)}\right]}{d ln \left(\frac{Px}{Py} \right)}


Alguém pode me ajudar
Grato
José Mario
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Re: função dispêndio

Mensagempor jmario » Qua Jun 09, 2010 09:23

jmario escreveu:
jmario escreveu:As funções dipêndios são as seguintes:

Dx(px,py,r)=\frac{r\sqrt[]{Px}}{\sqrt[]{Px}+\sqrt[]{Py}}
Dy(px,py,r)=\frac{r\sqrt[]{Py}}{\sqrt[]{Px}+\sqrt[]{Py}}

Por que a razão entre os dispêndios se transforma em:
\frac{Dx(px,py,r)}{Dy(px,py,r)}=\frac{\sqrt[]{Px}}{\sqrt[]{Py}}

A fórmula da elasticidade de substituição é dada por:
ES=\frac{TmgS(px,py)}{\frac{py}{px)}} \frac{d(\frac{py}{px)}}{dTmgS(px,py)}

Aí se chega nessa equação com apenas a derivada dessa razão com o ln, não entendi porque usar o logarítmo natural na derivada
\sigma=\frac{d ln\left[\frac{Dx(px,py,r)}{Dy(px,py,r)}\right]}{d ln \left(\frac{Px}{Py} \right)}


Alguém pode me ajudar
Grato
José Mario

jmario escreveu:
jmario escreveu:
jmario escreveu:As funções dipêndios são as seguintes:

Dx(px,py,r)=\frac{r\sqrt[]{Px}}{\sqrt[]{Px}+\sqrt[]{Py}}
Dy(px,py,r)=\frac{r\sqrt[]{Py}}{\sqrt[]{Px}+\sqrt[]{Py}}

Por que a razão entre os dispêndios se transforma em:
\frac{Dx(px,py,r)}{Dy(px,py,r)}=\frac{\sqrt[]{Px}}{\sqrt[]{Py}}

A fórmula da elasticidade de substituição é dada por:
ES=\frac{TmgS(px,py)}{\frac{py}{px)}} \frac{d(\frac{py}{px)}}{dTmgS(px,py)}

Aí se chega nessa equação com apenas a derivada dessa razão com o ln, não entendi porque usar o logarítmo natural na derivada
\sigma=\frac{d ln\left[\frac{Dx(px,py,r)}{Dy(px,py,r)}\right]}{d ln \left(\frac{Px}{Py} \right)}


Alguém pode me ajudar
Grato
José Mario
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Re: função dispêndio

Mensagempor MarceloFantini » Qua Jun 09, 2010 20:59

José Mário, não poste a mesma mensagem repetidas vezes em um curto intervalo de tempo. Isso ocupa muito espaço a troco de nada, não trará sua resposta mais rápido, é perda de tempo e é no mínimo não muito legal para com os outros.

Sobre a sua questão, quando você faz a razão \frac{Dx(px,py,r)}{Dy(px,py,r)} = \frac{r \sqrt {Px}} {\sqrt {Px} + \sqrt {Py}} \cdot \frac{\sqrt {Px} + \sqrt {Py}} {r \sqrt {Py}} = \frac {\sqrt {Px}}{\sqrt {Py}}, os r cancelam-se e a mesma coisa com a soma das raízes.

E não sei porque derivar usando o logaritmo natural.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}