• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função com proporcionalidade

Função com proporcionalidade

Mensagempor Bernar » Ter Mai 18, 2010 00:52

Um lago suporta no máximo 10.000 peixes. A taxa de crescimento da população de peixes é conjuntamente proporcional ao número presente deles e à diferença entre 10.000 e o número presente.
a) Se a taxa de crescimento for de 90 peixes por semana quando 1.000 peixes estão presentes, ache a taxa de crescimento como função do número presente.
b) Ache a taxa de crescimento quando houver 2.000 peixes.

Bom, x - > número presente . y -> taxa de crescimento.

então y = x ( 10.000 - x )
se x = 10.000, y = 90

Agora não sei mais o que faço. Acho que tem que ser colocado uma constante K. Mas eu nunca sei quando deve ser usado a constante K, alguém poderia me ajudar?
Bernar
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Set 09, 2009 22:37
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: Função com proporcionalidade

Mensagempor MarceloFantini » Ter Mai 18, 2010 20:40

Se y \propto x(10^4 -x), isso implica que \frac{y}{x(10^4-x)} = K. Usando os dados do enunciado, se y=90, então x=10^3. Jogando na relação:

\frac{90}{10^3(10^4-10^3)} = K \Rightarrow K = 10^{-5}.

Logo, a expressão é: y = 10^{-5}x(10^4-x).

No segundo supostamente imponha y = 2000 e faça a conta, mas tentei no wolframalpha e deu errado. Espero que alguém consiga esclarecer.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função com proporcionalidade

Mensagempor Douglasm » Ter Mai 18, 2010 21:46

Fantini, você resolveu o problema e não colocou a resposta da última! Ele disse 2000 peixes (x) e não que a taxa de crescimento (y) era 2000. Logo:

y = 10^{-5}.2000(10^4 - 2000) \; \therefore \; y = 160

A taxa de crescimento na letra b é de 160 peixes por semana.

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Função com proporcionalidade

Mensagempor MarceloFantini » Ter Mai 18, 2010 23:28

Nossa, que desatenção da minha parte. Obrigado Douglas! Você tem MSN, por acaso?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função com proporcionalidade

Mensagempor Douglasm » Qua Mai 19, 2010 06:28

Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.