por Bernar » Ter Mai 18, 2010 00:52
Um lago suporta no máximo 10.000 peixes. A taxa de crescimento da população de peixes é conjuntamente proporcional ao número presente deles e à diferença entre 10.000 e o número presente.
a) Se a taxa de crescimento for de 90 peixes por semana quando 1.000 peixes estão presentes, ache a taxa de crescimento como função do número presente.
b) Ache a taxa de crescimento quando houver 2.000 peixes.
Bom, x - > número presente . y -> taxa de crescimento.
então y = x ( 10.000 - x )
se x = 10.000, y = 90
Agora não sei mais o que faço. Acho que tem que ser colocado uma constante K. Mas eu nunca sei quando deve ser usado a constante K, alguém poderia me ajudar?
-
Bernar
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qua Set 09, 2009 22:37
- Formação Escolar: ENSINO FUNDAMENTAL II
- Andamento: cursando
por MarceloFantini » Ter Mai 18, 2010 20:40
Se

, isso implica que

. Usando os dados do enunciado, se

, então

. Jogando na relação:

.
Logo, a expressão é:

.
No segundo supostamente imponha y = 2000 e faça a conta, mas tentei no wolframalpha e deu errado. Espero que alguém consiga esclarecer.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Douglasm » Ter Mai 18, 2010 21:46
Fantini, você resolveu o problema e não colocou a resposta da última! Ele disse 2000
peixes (x) e não que a taxa de crescimento (y) era 2000. Logo:

A taxa de crescimento na letra b é de 160 peixes por semana.
Até a próxima.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MarceloFantini » Ter Mai 18, 2010 23:28
Nossa, que desatenção da minha parte. Obrigado Douglas! Você tem MSN, por acaso?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função real definida pela soma de uma função par c/uma ímpar
por Taah » Sáb Mar 27, 2010 15:33
- 3 Respostas
- 5195 Exibições
- Última mensagem por Taah

Dom Mar 28, 2010 13:21
Funções
-
- [plano tangente a função de duas variaveis dada por função]
por isaac naruto » Qui Dez 31, 2015 16:35
- 0 Respostas
- 4328 Exibições
- Última mensagem por isaac naruto

Qui Dez 31, 2015 16:35
Cálculo: Limites, Derivadas e Integrais
-
- [Desigualdade] entre função exponencial e função potência
por VitorFN » Sex Mai 26, 2017 15:18
- 1 Respostas
- 5417 Exibições
- Última mensagem por adauto martins

Sex Jul 07, 2017 12:17
Álgebra Elementar
-
- +uma função das trevas.ajuda aew!(função par mas heim!?)
por Fabricio dalla » Dom Fev 27, 2011 16:12
- 2 Respostas
- 3327 Exibições
- Última mensagem por LuizAquino

Dom Mar 06, 2011 09:17
Funções
-
- [FUNÇÃO] Não consigo achar a fórmula da função
por LAZAROTTI » Qui Set 27, 2012 00:06
- 1 Respostas
- 2824 Exibições
- Última mensagem por MarceloFantini

Qui Set 27, 2012 07:13
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.