(MACKENZIE) Se f(x) = mx + n e f(f(x)) = 4x + 9, a soma dos possíveis valores de n é:
Tenho dificuldade nas operações do exercício.

Douglaspimentel escreveu:(MACKENZIE) Se f(x) = mx + n e f(f(x)) = 4x + 9, a soma dos possíveis valores de n é:
Tenho dificuldade nas operações do exercício.



![f(f(x))=m[f(x)]+n f(f(x))=m[f(x)]+n](/latexrender/pictures/e8d597d7d99f4fa90dcdeb77481644b5.png)




. 
, g(x) = 
) , D(g) = R*
) , Im(g) = R*
), só que ae daria uma raiz de número negativo, e a minha área de estudo são só os número reais. Então acho que a minha resposta esteja certa. Se estiver errada, por favor corrijam, e as outras também. 
, o domínio de f(g(x)) consiste nos números x do domínio de g para os quais g(x) estejam no domínio de f, certo? Existe uma definição mais simples? Uma forma mais simples de achar o domínio da função composta? Ou alguém poderia me explicar isso mais claramente? 
![\frac{1}{\sqrt[2]{x+1}} \frac{1}{\sqrt[2]{x+1}}](/latexrender/pictures/ec85e04a67f07d73544a1e5397d16e4e.png)




Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
o ângulo entre o eixo horizontal e o afixo
. O triângulo é retângulo com catetos
e
, tal que
. Seja
o ângulo complementar. Então
. Como
, o ângulo que o afixo
formará com a horizontal será
, mas negativo pois tem de ser no quarto quadrante. Se
, então
. Como módulo é um:
.
.