• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Afim - Exercícios que não consegui

Função Afim - Exercícios que não consegui

Mensagempor guijermous » Seg Fev 22, 2010 17:36

Galera, estou tentando encerrar meu estudo na função afim, e há alguns exercícios que não consegui fazer de jeito nenhum !
Vou colocá-los aqui, e quem souber e me ajudar vou ser muito grato !

(Fuvest-SP) Qual é o conjunto solução da inequeação \frac {x} {x+1} > x ?

Agora, tem esse aqui. Eu sei que é fácil, tem uns 3 desse tipo, mas se eu conseguir resolver um consigo os demais.
(UFF-RJ) As empresas Alfa e Beta alugam televisores do mesmo tipo. A empresa Alfa cobra R$ 35,00 fixos pelos 30 primeiros dias de uso e R$ 1,00 por dia extra. A empresa Beta cobra R$ 15,00 pelos primeiros 20 dias de uso e R$ 1,50 por dia extra. Após N dias, o valor cobrado pela empresa Beta passa a ser maior que o do cobrado pela empresa Alfa. O valor de N é?

E este aqui meio chato.
(PUC-RJ) Seja K um número positivo. Então o conjunto dos números X tais que \frac{x-k}{k} >= 1 e \frac{x+k^2}{k} < k + 2 é?
Esse negócio de usar K no meio de inequações, não tenho idéia do que fazer!
Quem souber algum desses me ajuda ae por favor !
Muito obrigado! :y:
Abrs
guijermous
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Seg Fev 15, 2010 14:38
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Inf. Industrial
Andamento: formado

Re: Função Afim - Exercícios que não consegui

Mensagempor MarceloFantini » Seg Fev 22, 2010 20:54

Boa noite!

(FUVEST)

Primeiro, lembre-se de que x \neq -1. Agora, multiplicando-se os dois lados por (x+1):

x > x(x+1)

1 > x+1

x < 0

Portanto: (x \in \Re | x < 0)


(UFF-RJ)

Empresa Alfa:

A(x) = 35 para 0 \leq x \leq 30;

A(x) = 35+(x-30) para x> 30

Empresa Beta:

B(x) = 20 para 0 \leq x \leq 20

B(x) = 20 + 1.5(x-20) para x > 20

Se você plotar o gráfico, verá que em x=30, o custo é o mesmo. Em x=31, o custo passa. Algebricamente:

B(x) > A(x) para x>30

20+1.5x-30 > 35+x-30

0.5x > 15

x > 30


(PUC-RJ)

Como k \neq 0, multiplicando as duas desigualdades por k temos:

x-k \geq k

x+k^{2} < k^{2} +2k

Logo:

x \geq 2k

x < 2k

Portanto, acredito que seja conjunto vazio.

Espero ter ajudado.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}