• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função ( inequação do 1° grau)

Função ( inequação do 1° grau)

Mensagempor osmarioe » Seg Mai 04, 2015 13:29

Inequação do 1° grau

Determinar a maior solução inteira de (x-1) (x+2) - (x-2)² < x+4.

Resolução: resolvendo por produto notáveis:

(x² + x - 2) - (X² - 4x + 4) < x + 4 ; 4x < 10 ; x < 2,5

logo: as soluções inteiras são : -3; -2; -1; 0; 1; 2 e a maior delas é 2.

Não entendi esse numero 10 como ele surgiu?

Obrigado !!
osmarioe
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Dom Abr 26, 2015 22:05
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Função ( inequação do 1° grau)

Mensagempor DanielFerreira » Qui Mai 07, 2015 23:46

Olá Osmarioe, boa noite!

O 10 "surgiu" da redução dos termos semelhantes; isto é, 2 + 4 + 4.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}