por Miya » Seg Mar 30, 2015 10:14
Olá! Quero saber se está correto o que eu fiz?
Dados os conjuntos A={1,3,4},B={-2,1},c={-1,0,2} represente pelos elementos
a) AXB
B)BXA
C)AXC
RESPOSTAS:
a) AXB = {(1,-2), (3,-2), (4,-2), (1,1), (3,1), (4,1)}
b) BXA = {(-2,1), (1,1), (-2,3), (1,3), (-2,4), (1,4)}
c) AXC = {(1,-1), (3,-1), (4,-1), (1,0), (3,0), (4,0), (1,2), (3,2), (4,2)}
-
Miya
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Qui Mar 05, 2015 16:27
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por adauto martins » Seg Mar 30, 2015 21:30
a letra a) esta correto,se vc seguir o mesmo modelo nas outras,creio estar cerreto...eh usar a definiçao de produto cartesiano...uma funçao eh um subconjunto de um produto cartesiano q. segue uma regra de q. cada elemento do dominio(conj.A),tem uma unica imagem(um elemento de B)...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [P.A.] Está correto?
por Cleyson007 » Dom Mai 25, 2008 19:37
- 1 Respostas
- 3152 Exibições
- Última mensagem por admin

Dom Mai 25, 2008 19:55
Progressões
-
- [determinante] Está correto?
por Cleyson007 » Sáb Jul 19, 2008 13:21
- 1 Respostas
- 3530 Exibições
- Última mensagem por admin

Sáb Jul 19, 2008 16:40
Matrizes e Determinantes
-
- [Derivada] Esta correto o que eu fiz?
por carvalhothg » Ter Set 13, 2011 13:22
- 2 Respostas
- 1851 Exibições
- Última mensagem por thiago toledo

Ter Set 13, 2011 18:21
Cálculo: Limites, Derivadas e Integrais
-
- Também está correto?
por Cleyson007 » Qui Out 10, 2013 17:27
- 2 Respostas
- 1760 Exibições
- Última mensagem por Cleyson007

Sex Out 11, 2013 15:28
Geometria Analítica
-
- [Probabilidade] Está correto?
por KleinIll » Sex Out 25, 2013 15:45
- 2 Respostas
- 1953 Exibições
- Última mensagem por KleinIll

Sex Nov 29, 2013 00:31
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.