por Vencill » Qua Dez 03, 2014 17:50
Encontrar os valores máximos e mínimo da seguinte função:

no intervalo
![\left[\frac{1}{2},2 \right] \left[\frac{1}{2},2 \right]](/latexrender/pictures/8ad1180d111e15e8876bdc55e0c9c87f.png)
A resposta eu sei é: maximo: f(2) = 2 - ln 2 e mínimo: f(1) = 1
Agradeço a ajuda é que estou com dúvidas em funções.
-
Vencill
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Qui Nov 13, 2014 16:54
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por lucas_carvalho » Qua Dez 03, 2014 19:20
Olá
A função f(x)=ln2 é uma função constante para todo x. Logo não tem valores máximos ou mínimos...
-
lucas_carvalho
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Ter Dez 02, 2014 20:17
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia química
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [maximos e minimos] Problemas de minimos e maximos
por amigao » Seg Jun 24, 2013 22:28
- 1 Respostas
- 3705 Exibições
- Última mensagem por young_jedi

Ter Jun 25, 2013 17:49
Cálculo: Limites, Derivadas e Integrais
-
- Maximos e minimos
por Maykids » Qui Jun 02, 2011 01:30
- 1 Respostas
- 1400 Exibições
- Última mensagem por LuizAquino

Qui Jun 02, 2011 15:17
Cálculo: Limites, Derivadas e Integrais
-
- Máximos e mínimos
por Deivid » Seg Jun 20, 2011 18:41
- 9 Respostas
- 14209 Exibições
- Última mensagem por LuizAquino

Qua Jun 22, 2011 23:47
Cálculo: Limites, Derivadas e Integrais
-
- Problema, mínimos e máximos
por Bruhh » Sex Jun 11, 2010 16:45
- 3 Respostas
- 2552 Exibições
- Última mensagem por Bruhh

Sex Jun 11, 2010 16:53
Cálculo: Limites, Derivadas e Integrais
-
- Minimos e Maximos locais
por aline_n » Seg Jun 06, 2011 22:36
- 1 Respostas
- 1258 Exibições
- Última mensagem por LuizAquino

Ter Jun 07, 2011 11:32
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.