por Evaldo » Ter Jan 05, 2010 13:03
Um passageiro recebe de uma companhia aérea a seguinte informação em relação à bagagem a ser despachada: por passageiros, é permitido despachar gratuitamente uma bagagem de até 20kg ; para qualquer quantidade que ultrapasse os 20kg , será paga a quantia de R$ 8,00 por quilo excedente. Sendo P o valor pago pelo despacho da bagagem, em reais, e M a massa da bagagem, em kg, em que M > 20, então:
Gabarito: P=8(M-20)
Há homens que lutam um dia, e são bons;
Há outros que lutam um ano, e são melhores;
Há aqueles que lutam muitos anos, e são muito bons;
Porém há os que lutam toda a vida
Estes são os imprescindíveis
Bertold Brecht
-
Evaldo
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Qua Out 14, 2009 13:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciências Contábeis
- Andamento: formado
por MarceloFantini » Ter Jan 05, 2010 14:46
Boa tarde Evaldo!
Vamos montar uma pequena tabela, atribuindo valores para a massa da bagagem e vendo qual o preço a pagar, sabendo que a massa tem que ser maior que 20:

Perceba que, para cada aumento na unidade da massa, o preço aumenta de 8 reais. Então, a função é algo do tipo

, onde x é a massa. Usando as letras que ele pediu, fica:

. Note que é fácil de provar que está é realmente a função, pois se a massa for de 20 kg (tecnicamente não poderia pois o enunciado disse explicitamente que é maior) o preço é 0, ou seja, gratuito.
Espero ter ajudado.
Um abraço.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.