Olá!
Função é um tipo de relação munida de algumas características particulares, isto é, não é uma relação qualquer. Numa relação temos o que chamamos de Conjunto de Partida e o Conjunto de Chegada. Nas funções, esses conjuntos são, respectivamente, Domínio e Contradomínio. Em particular, nas funções todos os elementos do conjunto de partida, neste caso, domínio, devem fazer parte da relação. Caso algum elemento desse conjunto não tenha uma imagem na relação, então não estamos trabalhando com uma função. Agora, o contradomínio não faz essa exigência, ou seja, nem todos os elementos desse conjunto precisam fazer parte da relação. Logo, o conjunto imagem está contido no contradomínio, mas a recíproca nem sempre vale. Quando esses conjuntos são iguais, dizemos que a função é sobrejetora.
Vejamos alguns exemplos:
1) Seja f: N --> N (relação cujo conjunto de partida e conjunto de chegada são os naturais) uma função tal que f(x) = x. O domínio dessa função, ou seja, D(f) é dado por N (naturais); o contradomínio é CD(f) = N; e, observemos que a f não apresenta "condições de existência", isto é, está definida para todos os números naturais e, portanto, a sua imagem também corresponde ao conjunto dos números naturais (Im(f) = CD(f) = N).
2) Seja g: R* --> R uma função tal que g(x) = 1/x. Observemos que esta função nunca terá imagem igual a zero. Logo, Im(g) = R*.
https://www.wolframalpha.com/input/?i=1%2Fx3) Seja h: R --> R uma função tal que h(x) = x^2 + 4. Notemos que x^2 é sempre positivo. Da mesma forma, x^2 + 4 também é sempre positivo para qualquer valor de x. Logo, os números negativos já podem ser excluídos da imagem, apesar de fazerem parte do contradomínio. Analogamente, note que x^2 + 4 nunca será igual a zero, uma vez que teríamos x^2 = -4, o que não está definido para o mundo dos números reais e, sim, para os complexos. Assim, o zero também não está na imagem de h. Veja:
https://www.wolframalpha.com/input/?i=x^2+%2B+4Em resumo é isso... Entendeu? Se quiser, pode perguntar...
