• Anúncio Global
    Respostas
    Exibições
    Última mensagem

funções inversas

funções inversas

Mensagempor Edgard Guarido » Sex Mar 07, 2014 18:53

6-(MED. JUNDIAI) Sejam as funções f e g , de R em R, definidas por
f(x) = 2x - 1 e g(x) = kx + t. A função g será inversa de f se, e somente se,
a)k - t = 1
b)k = 2t
c) k + t = 0
d) k = t = ½

não entende por que deu a alternativa d
sendo inversa f(x) e g(x)
f(x)= 2x -1
x/2 +1/2= y

g(x) = kx + t
x/k - t/k = y


por que o resultado da alternativa d



10-(ANGLO) Seja f(x) = 3x e f -¹ a sua inversa. A raiz da equação f(x) = f -¹(x)
é :
a)0
b) 3
c) 1/3


calculando:
f -¹ = x/3
f(X) =f-¹(x) = 3x = x/3 na alternativa da letra A, não sei como desenvolver para dar 0.


quem souber por favor me ajude. E até onde eu fiz está certo?
Edgard Guarido
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Mar 07, 2014 17:57
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia elétrica
Andamento: cursando

Re: funções inversas

Mensagempor Russman » Sáb Mar 08, 2014 19:06

Na 1° é só comparar g(x) = \frac{1}{2}x + \frac{1}{2} com g(x) = kx+t. Daí, k=t = \frac{1}{2}.

Na 2° você obteve uma equação de 1° grau 3x = \frac{x}{3}. Resolvendo,

3x - \frac{x}{3} = 0 \Rightarrow \frac{9x-x}{3} = 0 \Rightarrow \frac{8x}{3} = 0 \Rightarrow x=0

(Pense: que número tem seu triplo igual a sua terça parte? Só pode ser o 0. )
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: funções inversas

Mensagempor Edgard Guarido » Qui Mar 13, 2014 15:54

muito obrigado
Edgard Guarido
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Mar 07, 2014 17:57
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.