• Anúncio Global
    Respostas
    Exibições
    Última mensagem

calcúlo de área - o que há de errado?

calcúlo de área - o que há de errado?

Mensagempor natanaelskt » Dom Set 15, 2013 17:32

(UEG-2012) Em um terreno ,na forma de um triângulo retângulo será construído um jardim retangular,conforme a figura abaixo.

FIGURA DE UM TRIÂNGULO COM O RETANGULO INSCRITO.

Sabendo-se que os dois menores lados do terreno medem 9m e 4m,as dimensões do jardim para que ele tenha a maior área possível,serão,respectivamente.

a-) 2m e 4,5m
b-)3m e 4m
c-)3,5m e 5m
d-)2,5m e 7m

Resolvi o exercício e acertei,mas agora que vem a dúvida.porque a área tem que ser máxima e eu achei os lados que são 2m e 4,5m,porém para ser a maior área possível,o produto tem que ser máximo e por isso eu acho que a maior área seria os de lados 3,5 e 5 ou 2,5 e 7 porque o produto desses dá o maior valor,o problema é que pelo meus cálculos os números encontrados são 2 e 4,5 e eu acertei e meus cálculos estão certos,então a matemática falhou?
natanaelskt
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Seg Mar 11, 2013 15:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: calcúlo de área - o que há de errado?

Mensagempor natanaelskt » Ter Dez 24, 2013 10:52

VAMO GALERA ME AJUDA
natanaelskt
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Seg Mar 11, 2013 15:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.