• Anúncio Global
    Respostas
    Exibições
    Última mensagem

função: conjunto

função: conjunto

Mensagempor Victor Gabriel » Qui Mai 09, 2013 19:21

Boa noite pessoal, se tiver algum que puder mim ajudar nesta questão ficarei grato.

questão: Se A é um conjunto com 3 elementos e B um conjunto com 11elementos, quantas funções f : A \rightarrow B existe ? Quantas delas são injetivas?
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: função: conjunto

Mensagempor brunoiria » Sex Mai 10, 2013 01:14

ola Victor, está questão envolve o conceito de combinatória.
bom. assim vamos tentar simplificar A é um conjunto com 3 elementos qualquer por exemplo {a,b,c}
e B com 11, exemplo {1,2,3,4,....,11}.
a definição de função é
Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:

diz-se que a função f de X em Y que relaciona cada elemento x em X , um único elemento y = f (x) em Y (de uma olhada em livros de matemática, tipo do iezzi ou do elon)
assim o elemento a pode se relacionar com qualquer número 1,2,3,4.....,11. apenas uma vez
exemplo;
1.   f(a)=1; f(b)= 3; f(c)=7
2.   f(a)=1; f(b)= 3; f(c)=1
3.   f(a)=5; f(b)= 5; f(c)=5
veja que em 2. e 3. apesar de repetir a imagem nenhum domínio se relaciona duas vezes.

Assim cada elemento de A pode se relacionar com qualquer um dos onze elementos de B

então existem 11^3 maneiras de expressar a função f: A\mapsto B.
Dê uma olhada na definição de injetiva e tente fazer. o principio é o mesmo.
boa sorte nos estudos
brunoiria
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Jun 23, 2012 10:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic Mat
Andamento: cursando

Re: função: conjunto

Mensagempor Victor Gabriel » Sex Mai 10, 2013 02:19

Professor brunoiria olha se estou certo!

Se uma função f:A\rightarrow B é uma correspondência que a cada elemento a de A associa um único elemento de B, denotando por f(a).
Quantas dessas correspondência podem ser feita se A={a,b,c} e B={1,2,3,...,11}?
Logo existe 11³=1331 funções f:A\rightarrow B , as injetivas são 3!{C}_{(11,3)}=3!\frac{11!}{3!(11-3)}=990.

LOGO AS INJETIVAS SÃO 990.
Estou certo?
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: função: conjunto

Mensagempor brunoiria » Sex Mai 10, 2013 13:35

correto :y:
brunoiria
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Jun 23, 2012 10:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic Mat
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59