• Anúncio Global
    Respostas
    Exibições
    Última mensagem

função: conjunto

função: conjunto

Mensagempor Victor Gabriel » Qui Mai 09, 2013 19:21

Boa noite pessoal, se tiver algum que puder mim ajudar nesta questão ficarei grato.

questão: Se A é um conjunto com 3 elementos e B um conjunto com 11elementos, quantas funções f : A \rightarrow B existe ? Quantas delas são injetivas?
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: função: conjunto

Mensagempor brunoiria » Sex Mai 10, 2013 01:14

ola Victor, está questão envolve o conceito de combinatória.
bom. assim vamos tentar simplificar A é um conjunto com 3 elementos qualquer por exemplo {a,b,c}
e B com 11, exemplo {1,2,3,4,....,11}.
a definição de função é
Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:

diz-se que a função f de X em Y que relaciona cada elemento x em X , um único elemento y = f (x) em Y (de uma olhada em livros de matemática, tipo do iezzi ou do elon)
assim o elemento a pode se relacionar com qualquer número 1,2,3,4.....,11. apenas uma vez
exemplo;
1.   f(a)=1; f(b)= 3; f(c)=7
2.   f(a)=1; f(b)= 3; f(c)=1
3.   f(a)=5; f(b)= 5; f(c)=5
veja que em 2. e 3. apesar de repetir a imagem nenhum domínio se relaciona duas vezes.

Assim cada elemento de A pode se relacionar com qualquer um dos onze elementos de B

então existem 11^3 maneiras de expressar a função f: A\mapsto B.
Dê uma olhada na definição de injetiva e tente fazer. o principio é o mesmo.
boa sorte nos estudos
brunoiria
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Jun 23, 2012 10:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic Mat
Andamento: cursando

Re: função: conjunto

Mensagempor Victor Gabriel » Sex Mai 10, 2013 02:19

Professor brunoiria olha se estou certo!

Se uma função f:A\rightarrow B é uma correspondência que a cada elemento a de A associa um único elemento de B, denotando por f(a).
Quantas dessas correspondência podem ser feita se A={a,b,c} e B={1,2,3,...,11}?
Logo existe 11³=1331 funções f:A\rightarrow B , as injetivas são 3!{C}_{(11,3)}=3!\frac{11!}{3!(11-3)}=990.

LOGO AS INJETIVAS SÃO 990.
Estou certo?
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: função: conjunto

Mensagempor brunoiria » Sex Mai 10, 2013 13:35

correto :y:
brunoiria
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Jun 23, 2012 10:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic Mat
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.