• Anúncio Global
    Respostas
    Exibições
    Última mensagem

como se faz?

como se faz?

Mensagempor Amandatkm » Ter Abr 30, 2013 17:09

22. O valor dek , positivo, para o qual uma das raízes da equação x2 – 3kx + 6k = 0, seja o dobro da outra raiz é:
a) 1
b) 2
c) 3
d)3/2
e) 4
Amandatkm
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Ter Mar 12, 2013 12:51
Formação Escolar: ENSINO MÉDIO
Área/Curso: curso técnico em admiistração
Andamento: cursando

Re: como se faz?

Mensagempor Cleyson007 » Ter Abr 30, 2013 17:20

É a mesma situação desse exercício: http://br.answers.yahoo.com/question/in ... 209AAfUAjS
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: como se faz?

Mensagempor Amandatkm » Ter Abr 30, 2013 20:11

Eu não conseguir continuar,olha ate onde fui'
x ' é uma raiz
x " = 2 x ' = é a outra raiz

Soma das raízes,

x ' + x " = - b/a {"a" é o coeficiente do termo "x" e "a" do temo "x² "}
x'+2x=-(3k)/1
3x=3k
x'=k
Produto das raízes,

x ' . x " = c/a
x'*2x=6/1
k*2k=6k
2k²=6k
No exemplo que vc me passou,quando chegou aqui p X deu zero,eu nao entendi porque.
agora eu nao sei o que fazer
sera que seria assim:
2k²=6k
k²=6k/2
k²=3k
k=raiz de 3
como se pede o dobro..seria raiz de 9,que da 3 alternativa C
é isso?
Amandatkm
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Ter Mar 12, 2013 12:51
Formação Escolar: ENSINO MÉDIO
Área/Curso: curso técnico em admiistração
Andamento: cursando

Re: como se faz?

Mensagempor Cleyson007 » Qua Mai 01, 2013 13:46

Amandatkm escreveu:Eu não conseguir continuar,olha ate onde fui'
x ' é uma raiz
x " = 2 x ' = é a outra raiz

Soma das raízes,

x ' + x " = - b/a {"a" é o coeficiente do termo "x" e "a" do temo "x² "}


Até aqui está tudo ok :y:

Depois, o correto seria: x' + x" = -(-3k)/1

x' + x" = 3k

x' + 2x' = 3k ----> 3x' = 3k (Logo, x' = k)

(x') (2x') = c/a --> Produto das raízes

(k)(2k) = 6k --> Resolvendo, k = 0 ou k = 3.

Tente concluir a partir daqui :y:

Comente qualquer dúvida.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.