por Tatasacchi_123 » Seg Abr 08, 2013 13:12
Por Favor, abaixo encontra-se um exercício já resolvido. Minha dúvida é simples:
Porque no local destacado em vermelho ocorre a multiplicação por o,9 ??
Obrigada desde já.
Uma grandeza X é diretamente proporcional às grandezas P e T e inversamente proporcional ao quadrado a grandeza W. Se aumetarmos P de 60% do seu valor e diminuirmos T de 10% do seu valor, para que a grandeza X não se altere, devemos:
Uma grandeza X é diretamente proporcional às grandezas P e T e inversamente proporcional ao quadrado a grandeza W.
Isso que está escrito aí é expresso matematicamente por isso daqui: X = k.P.T/W² em que k é a constante de proporcionalidade.
Logo, X´= k.(1,60P).(0,90T)/W´
para que a grandeza X não se altere --> X´= X
Daí, k.(1,60P).(0,90T)/W´² = k.P.T/W²
1,60.0,90/W´² = 1/W²
1,44/W´² = 1/W²
W² = W´²/1,44
W = W´/1,2
W´ = 1,2 W ( aumentar W em 20% )
-
Tatasacchi_123
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Mar 26, 2013 16:01
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Curso Técnico em Química
- Andamento: formado
por DanielFerreira » Seg Abr 08, 2013 17:04
Tatasacchi_123,
deve-se diminuir 10% daquela grandeza, então, ela passará a: 90% = 90/100 = 0,90 = 0,9.
Veja:

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Manipulação e Cálculo
por Jhenrique » Sex Dez 07, 2012 20:50
- 4 Respostas
- 4428 Exibições
- Última mensagem por Jhenrique

Seg Dez 17, 2012 12:51
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo 1] Manipulação de função
por Larissa28 » Ter Mar 24, 2015 23:54
- 2 Respostas
- 2361 Exibições
- Última mensagem por Larissa28

Qua Mar 25, 2015 19:47
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo 1] Manipulação de função
por Larissa28 » Dom Set 27, 2015 22:24
- 7 Respostas
- 5743 Exibições
- Última mensagem por adauto martins

Qua Set 30, 2015 17:19
Sequências
-
- [Problema] Dificuldade com manipulação de fórmulas
por FilipeMSoares » Sex Mai 24, 2019 19:35
- 0 Respostas
- 5698 Exibições
- Última mensagem por FilipeMSoares

Sex Mai 24, 2019 19:35
Trigonometria
-
- Proporções
por alfabeta » Seg Mar 19, 2012 23:52
- 3 Respostas
- 1814 Exibições
- Última mensagem por Juvenal

Ter Mar 20, 2012 17:42
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.