por Eduardo_GNR » Qui Mar 14, 2013 21:41
Pessoal,
Sou novo no fórum e estou estudando funções injetoras, sobrejetoras, bijetoras, enfim, e tenho 3 exercícios aqui que eu não sei como fazer. Alguém ajuda?
Determine quais das seguintes funções de Z ? Z são injetoras:
1 f(x) = x ? 1 2 f(x) = x2 + 1 3 f(x) = dx/2e
2 Quais das funções anteriores são sobrejetoras? 3 Se f e f ? g são injetoras, então g é injetora também? Apresente uma prova para justi?car a sua resposta
Obrigado.
-
Eduardo_GNR
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Mar 14, 2013 21:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: cursando
por e8group » Sex Mar 15, 2013 12:15
vou postar apenas a resolução (2) não entendi a questão (1) não estar claro ,por isso é importante utilizar LaTeX para redigir suas equações ,fórmulas e etc .
Resolução : (Caso geral )
Considere ,

e

.
Hipótese :

são injectivas .
Vamos considerar o caso em que

mas

não está contido em

.Sendo assim ,

e

.
Suponhamos que

não é injectiva ,isto é , dados

distintos não implica

,em outras palavras ,dados

distintos ,podemos ter

.Se

são simultaneamente elementos do conjunto

e

,isto é ,

então

é injetiva .
Prova :
Como estamos supondo que

não é injectiva , podemos ter

para

.Se

então

, por outro lado

para

.
Observe que temos uma contradição , pois

;logo

é injetiva .
Deixo para você o caso em que

ou seja

e

o argumento será semelhante .
Espero que ajude .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função injetora, sobrejetora.. par, ímpar?
por Jonatan » Sex Jul 30, 2010 11:59
- 1 Respostas
- 1986 Exibições
- Última mensagem por MarceloFantini

Sex Jul 30, 2010 15:08
Funções
-
- função injetora
por lineleal18 » Seg Nov 02, 2009 14:13
- 1 Respostas
- 5930 Exibições
- Última mensagem por thadeu

Qua Nov 04, 2009 13:09
Funções
-
- Função injetora
por Pri Ferreira » Qua Nov 09, 2011 20:52
- 1 Respostas
- 980 Exibições
- Última mensagem por LuizAquino

Qui Nov 10, 2011 20:19
Funções
-
- Função não sobrejetora
por Cleyson007 » Ter Abr 24, 2012 09:50
- 3 Respostas
- 2769 Exibições
- Última mensagem por Russman

Ter Abr 24, 2012 16:50
Funções
-
- Função sobrejetora
por leandrofontesantos » Seg Set 29, 2014 13:08
- 3 Respostas
- 1604 Exibições
- Última mensagem por adauto martins

Sáb Out 04, 2014 12:22
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.