• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função

Função

Mensagempor karen » Ter Nov 27, 2012 16:39

Na figura abaixo, temos em esboço do gráfico da função f(x) = 2x³ - 15x² + k, em que k é uma constante.

Quantas soluções inteiras menores que 6 possui a inequação f(x) > 0 ?

Bom, como eu não consigo fazer o gráfico, posso dizer que ele me passa duas informações. Sei que em x=0, y=125 e em x=5, y=0.
São esses os pontos que consigo a partir do gráfico.

Substitui f(x) por 125 e x por 0. Portanto, k=125

Agora preciso resolver a inequação f(x) = 2x³ - 15x² + 125 > 0
Me ajudem por favor.
karen
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Mai 03, 2012 20:49
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Eletrônica
Andamento: formado

Re: Função

Mensagempor young_jedi » Ter Nov 27, 2012 18:39

conhecendo a função que voce encontrou

f(x)=2x^3-15x^2+125

e sabendo que f(5)=0, entãos abemos que 5 é raiz do polinomio

2x^3-15x^2+125=0

portanto podemos escrever

(x-5)P(x)=2x^3-15x^2+125

encontrando P(x) fazendo a divisão de polinomios

P(x)=2x^2-5x-25

então

f(x)=(x-5)(2x^2-5x-25)

encontrando as raizes do polinomio de segundo grau

x1=5 e x2=-5/2

então podemos dizer que f(x) tem como raizes 5 e -5/2

portanto a função é maior que 0 para valores de x que sejam maiores que -5/2 e diferente de 5 pq em x=0 a função e igual a 0

(-5/2<x<5) e (x>5)
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.