• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Funções exponenciais - Desintegração radioativa

Funções exponenciais - Desintegração radioativa

Mensagempor emsbp » Sáb Jun 30, 2012 17:46

Boa tarde.
O problema é o seguinte: «Admita que o carbono 14 sofre desintegração radioativa de acordo com a fórmula Q(t) ={Q}_{0}{e}^{-0.00012t}, com t medido em anos.
Uma amostra vegetal descoberta numa gruta pré-histórica contém apenas 20% do carbono 14 esperado em plantas vivas. Determine a idade aproximada da amostra.»

Ora, a meu ver, se a amostra apenas contém 20%, quer dizer que a desintegração foi de 80%. Logo Q(t)= 0.8. A questão é como vou determinar {Q}_{0}.
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado

Re: Funções exponenciais - Desintegração radioativa

Mensagempor MarceloFantini » Sáb Jun 30, 2012 21:48

Estou imaginando que Q(t) represente a quantidade restante de carbono no instante t. Pelo enunciado você sabe que resta apenas 20% do inicial, significa que Q(t_0) = 0,2Q_0. Agora faça 0,2Q_0 = Q_0 \cdot e^{-0,00012t_0} e encontre t_0.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}