por LucieneHolanda » Dom Jun 03, 2012 19:18
Ja tentei de todas as formas mas não consigo chegar a nenhuma das alternativas e estou com dúvidas nas que eu marquei!! São quatro questões:
1- A taxa de variação de z em relação a t quanto t= 0, sendo z=x.y+2x.y² e sabendo-se que é igual a x= e^+ e y= 2+ t²
Sugestão: use a regra de cadeia dz/dt = az/ax. dx/dt + az/ay. dy/dt
a) 2
b)3
c)-2
d)0
e) 1
Marquei a alternativa E. Séra que está certo?
2- Considerando a função, o ponto critico (0,0) é: f(x,y) = x² - y² o ponto critica fxx(0,0) . fyy(0,0) - [ fxy(0,0)]²
a) Maximo relativo
b) Minimo relativo
c) Nada se conclui
d) Maximo absoluto
e) Ponto de sela
Marquei a alternativa C. Séra que esta certo?
3- A derivada parcial de f (x,y) = 2x³+y² em relação a x é:
Estou na dúvida entre as duas respostas abaixo, qual sera a correta?
a) 6x+y²
b) df = { (x,y) . pertence R² (y diferente x²)
4- A representação grafica do dominio da função f(x,y) = x²+y²-4 <--- dentro da raiz
Disculpem qualquer coisa, sou nova aqui no forum e um tanto leiga em computador porém necessito que me ajudem, também estou a disposição para ajudar. Obrigada.
-
LucieneHolanda
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Abr 18, 2012 15:41
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
por Russman » Dom Jun 03, 2012 23:30
LucieneHolanda escreveu:1- A taxa de variação de z em relação a t quanto t= 0, sendo z=x.y+2x.y² e sabendo-se que é igual a x= e^+ e y= 2+ t²
Seria x=e^t ?
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por capodeferro » Ter Jun 05, 2012 12:33
Bom dia!
Fiz um exercício semelhante ao 4 numa prova ontem.
Domínio são valores que tornam a função verdadeira.
Como x²+y²-4 está dentro de raiz, temos as condições de existência.
Na minha prova que fiz ontem eu tinha essa mesma questão, mas estava como denominador. (era 120/raiz x²+y²-4)
No meu caso, como não existe raiz quadrada de números negativos E um denominador não pode ser 0 ficou: x²+y²-4 > 0 -> x²+y² > 4.
No seu caso, como não está como denominador, a raiz pode ser = 0 tambem, pois raiz de 0 é 0. Logo x²+y²-4>=0 -> x²+y²>=4.
x²+y²>=4 indica um gráfico de circunferencia, cujo tamanho do raio é a raiz do númerodo segundo membro (4).
A circunferencia terá centro (0,0) pois não tem ninguem multiplicando x e y.
seu gráfico terá centro 0,0. E o raio será 2.
Ficará como um sol. Fechado e agregando todos os valores pra fora da circunferencia incluindo a linha da circunferencia (>=2).
Bom, tentei te ajudar, sou aluno tambem, sei fazer o exercício mas nao tenho didática.
-
capodeferro
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Jun 05, 2012 11:20
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia Mecanica
- Andamento: cursando
por LucieneHolanda » Ter Jun 05, 2012 15:26
capodeferro escreveu:Bom dia!
Fiz um exercício semelhante ao 4 numa prova ontem.
Domínio são valores que tornam a função verdadeira.
Como x²+y²-4 está dentro de raiz, temos as condições de existência.
Na minha prova que fiz ontem eu tinha essa mesma questão, mas estava como denominador. (era 120/raiz x²+y²-4)
No meu caso, como não existe raiz quadrada de números negativos E um denominador não pode ser 0 ficou: x²+y²-4 > 0 -> x²+y² > 4.
No seu caso, como não está como denominador, a raiz pode ser = 0 tambem, pois raiz de 0 é 0. Logo x²+y²-4>=0 -> x²+y²>=4.
x²+y²>=4 indica um gráfico de circunferencia, cujo tamanho do raio é a raiz do númerodo segundo membro (4).
A circunferencia terá centro (0,0) pois não tem ninguem multiplicando x e y.
seu gráfico terá centro 0,0. E o raio será 2.
Ficará como um sol. Fechado e agregando todos os valores pra fora da circunferencia incluindo a linha da circunferencia (>=2).
Bom, tentei te ajudar, sou aluno tambem, sei fazer o exercício mas nao tenho didática.
Imagina capodederro!! Vc explicou muito bem, entendi tudo. Pela sua resposta acredito que eu tenha errado esta questão. Ainda não tive acesso ao gabarito, aqui na UNIR os professores estão de greve. Obrigada!!!
Editado pela última vez por
LucieneHolanda em Ter Jun 05, 2012 15:31, em um total de 1 vez.
-
LucieneHolanda
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Abr 18, 2012 15:41
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
por LucieneHolanda » Ter Jun 05, 2012 15:30
Russman escreveu:LucieneHolanda escreveu:1- A taxa de variação de z em relação a t quanto t= 0, sendo z=x.y+2x.y² e sabendo-se que é igual a x= e^+ e y= 2+ t²
Seria x=e^t ?
Disculpe mas não entendi voce Russman. O segundo "e" é uma conjunção. E é: e^+ não e^t
-
LucieneHolanda
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Abr 18, 2012 15:41
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função de duas variáveis
por lilianers » Qua Ago 21, 2013 19:37
- 1 Respostas
- 2214 Exibições
- Última mensagem por Renato_RJ

Qui Ago 22, 2013 12:46
Funções
-
- Continuidade função de duas variáveis
por ormatos » Sáb Abr 07, 2018 17:47
- 0 Respostas
- 4468 Exibições
- Última mensagem por ormatos

Sáb Abr 07, 2018 17:47
Cálculo: Limites, Derivadas e Integrais
-
- Função de duas variavéis nos pontos (x,y).
por Sobreira » Qui Abr 11, 2013 08:55
- 1 Respostas
- 1845 Exibições
- Última mensagem por marinalcd

Sex Abr 12, 2013 15:09
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITES] Função de duas variáveis
por Sohrab » Ter Abr 23, 2013 03:18
- 7 Respostas
- 6457 Exibições
- Última mensagem por brunno10

Qua Mai 01, 2013 00:28
Cálculo: Limites, Derivadas e Integrais
-
- Limite de Função de Duas Variáveis
por raimundoocjr » Qui Out 10, 2013 22:29
- 0 Respostas
- 1562 Exibições
- Última mensagem por raimundoocjr

Qui Out 10, 2013 22:29
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.