por amandactdas » Qui Jul 23, 2009 13:14
Olá, sou estudante do 3° ano do ensino médio da rede pública e estou revisando algumas matérias.
Eis que não aprendi muito sobre módulos, e me deparo com o seguinte exercício da PUC-MG:
A soma das raízes da equação: x² - x - |x| - 4 = 0
A resposta é:
![\sqrt[2]{5} - 1 \sqrt[2]{5} - 1](/latexrender/pictures/34a78f4899ffca6ff4ec34d80bf5e040.png)
Ao realizar meus cálculos levei em consideração a propriedade modular que diz que: |x|² = |x²| = x²
então mudei a equação principal para |x|² - x - |x| - 4 = 0
A partir daí não sei se posso colocar o outro x em módulo... Mesmo assim tentei, então ficou:
|x|² - |x| - |x| - 4 = 0 , Substitui |x| por y , e fiz a resolução normalmente:
y² - 2y - 4 = 0 , Raízes: y' =
![\frac{2 + 2\sqrt[2]{5}}{2} \frac{2 + 2\sqrt[2]{5}}{2}](/latexrender/pictures/5bf0273de34b495af83e156340ad1bf6.png)
e y" =
![\frac{2 - 2\sqrt[2]{5}}{2} \frac{2 - 2\sqrt[2]{5}}{2}](/latexrender/pictures/5a53b43643f284f65388221ff0704033.png)
Agora não sei como continuar... poderiam me ajudar?
-
amandactdas
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Jul 23, 2009 12:48
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Molina » Qui Jul 23, 2009 15:26
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Equação Modular] com equação de 2º grau
por paola-carneiro » Qui Abr 05, 2012 15:53
- 2 Respostas
- 3261 Exibições
- Última mensagem por paola-carneiro

Sex Abr 06, 2012 16:23
Funções
-
- Equação modular.
por JoaoGabriel » Sáb Set 18, 2010 11:01
- 3 Respostas
- 2353 Exibições
- Última mensagem por JoaoGabriel

Sáb Set 18, 2010 14:00
Funções
-
- Equação Modular
por baianinha » Ter Mai 24, 2011 22:15
- 2 Respostas
- 1825 Exibições
- Última mensagem por LuizAquino

Sex Mai 27, 2011 22:05
Sistemas de Equações
-
- Equação Modular
por Rafael16 » Dom Mar 04, 2012 14:07
- 3 Respostas
- 1990 Exibições
- Última mensagem por LuizAquino

Seg Mar 05, 2012 14:23
Equações
-
- [Equação Modular]
por marilgomes » Sáb Jun 01, 2013 13:44
- 0 Respostas
- 879 Exibições
- Última mensagem por marilgomes

Sáb Jun 01, 2013 13:44
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.