• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação - Me ajudem de novo? rs

Inequação - Me ajudem de novo? rs

Mensagempor ra-phaela » Ter Jul 07, 2009 15:26

Em uma maternidade, num certo dia 3 mães deram a luz.
A primeira teve gemeos; a segunda trigemeos, e a
terceira, um único filho.

considere, para aquele dia, o conjunto das 3 mães, o
conjuntos dos 6 bebes e as seguintes relações:

R1 que associa cada mãe a seu filho;
R2 que associa cada filho a sua mãe, e
R3 que associa cada bebe ao seu irmão.

é (são) função (funções):

a)somente R1
b)somente R2
c)somente R3
d)R1,R2 e R3
ra-phaela
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Jul 07, 2009 14:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Inequação - Me ajudem de novo? rs

Mensagempor lucasguedes » Ter Jul 07, 2009 15:45

RESPOSTA: b)somente R2
___________________________________________
Explicação:

R1: pelo menos 1 mãe se relaciona com + de 1 Filho. Isso NÃO PODE ocorrer, poderia ocorrer de 1 filho se relacionar com + de uma mãe!

R2: Cada filho se relaciona com sua Mãe. CORRETÍSSIMO!

R3: no caso dos trigêmeos 1 bebê se relacionará com 2 irmãos. NÃO PODE!
lucasguedes
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Jun 25, 2009 19:12
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso tecnico em eletrotecnica
Andamento: cursando

Re: Inequação - Me ajudem de novo? rs

Mensagempor lucasguedes » Ter Jul 07, 2009 15:54

lucasguedes escreveu:RESPOSTA: b)somente R2
___________________________________________
Explicação:

R1: pelo menos 1 mãe se relaciona com + de 1 Filho. Isso NÃO PODE ocorrer, poderia ocorrer de 1 filho se relacionar com + de uma mãe!

R2: Cada filho se relaciona com sua Mãe. CORRETÍSSIMO!

R3: no caso dos trigêmeos 1 bebê se relacionará com 2 irmãos. NÃO PODE!


veja essa imagem http://upload.wikimedia.org/wikipedia/c ... uncao1.png
o "1" e o "2" se relacionam com o mesmo e está CORRETO.
agora o "3" se relaciona com + de 1 e está ERRADO!

Espero ter ajudado!
lucasguedes
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Jun 25, 2009 19:12
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso tecnico em eletrotecnica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59