por Beckyh » Qua Abr 11, 2012 06:45
Bom dia, gostaria que me ajudassem com meu problema de pif, eu simplesmente travo nas frações, a questão é a seguinte:
Se n E N*, mostre por indução que a seguinte fórmula é válida:

-
Beckyh
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Abr 11, 2012 06:32
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MarceloFantini » Qua Abr 11, 2012 21:03
Para aplicar o princípio da indução finita precisamos inicialmente mostrar o caso

. Mostre-nos como você fez isso.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Beckyh » Qui Abr 12, 2012 00:21
para

Temos:


, tornando verdade

.
Hipótese:

, tomamos como verdade a hipótese e provamos para k+1.
Tese:

-
Beckyh
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Abr 11, 2012 06:32
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Princípio da Indução Finita
por Fontelles » Dom Jan 17, 2010 14:42
- 9 Respostas
- 77177 Exibições
- Última mensagem por Vennom

Qui Abr 26, 2012 23:04
Funções
-
- PIF - Principio da Indução Finita
por ederj » Seg Jun 28, 2010 13:35
- 3 Respostas
- 7571 Exibições
- Última mensagem por Tom

Sex Jul 02, 2010 20:01
Funções
-
- Princípio de Indução Finita (PIF)
por Jorge Rodrigo » Qui Jun 09, 2011 17:37
- 1 Respostas
- 5145 Exibições
- Última mensagem por MarceloFantini

Qui Jun 09, 2011 20:44
Álgebra Elementar
-
- Princípio da Indução Finita
por silvia fillet » Qui Out 20, 2011 12:04
- 3 Respostas
- 8874 Exibições
- Última mensagem por silvia fillet

Sex Out 21, 2011 17:33
Álgebra Elementar
-
- [P.I.F]Principio de Indução Finita
por holandaleo » Sáb Fev 13, 2016 18:48
- 1 Respostas
- 3737 Exibições
- Última mensagem por adauto martins

Qui Fev 25, 2016 21:31
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.