• Anúncio Global
    Respostas
    Exibições
    Última mensagem

expressoes numericas

expressoes numericas

Mensagempor natyfofinha123456 » Qua Mar 28, 2012 17:13

2-(-1)^3+4(-2)^2-3(-2)^1-8(-2)°

ja tentei mil vezes porem nao consegui podem me ajudar
Editado pela última vez por natyfofinha123456 em Qui Mar 29, 2012 18:34, em um total de 1 vez.
natyfofinha123456
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Dom Mar 04, 2012 16:21
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: fundamental
Andamento: cursando

Re: expressoes numericas

Mensagempor MarceloFantini » Qua Mar 28, 2012 23:30

Quais foram suas tentativas? Leia as regras do fórum antes de postar: regras.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: expressoes numericas

Mensagempor profmatematica » Qui Mar 29, 2012 00:06

natyfofinha123456 escreveu:2-(-1)^3+4(-2)^2-3(-2)^1-8(-2)°

linda a primeira coisa que deves saber é que todo número negativo com expoente par é positivo e quando o número negativo tiver expoente ímpar será negativo
2*(-1)+4*(4)-3*(-2)-8????não vi o resto da expressão
:-)
profmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Sex Ago 27, 2010 13:34
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.