• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função_0209

Função_0209

Mensagempor rhodry » Seg Dez 05, 2011 21:04

o gráfico segue em anexo:
O gráfico que segue representa uma função polinomial f, do segundo grau. Os pontos
A = (1, 0), B = (4, 6) e C = (4,5, 10,5) pertencem a esse gráfico.
a) Determine a lei de formação de f.
Anexos
Gráfico_0209.JPG
rhodry
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Out 25, 2011 17:59
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Função_0209

Mensagempor Rosana Vieira » Seg Dez 05, 2011 22:52

Olá rhodry, você já resolveu o exercício 1a e 1b e você pode me ajudar a terminar 1b)| x – y | = 3
x – y = 3
x = 3 + y
y = 3 – x
Rosana Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 74
Registrado em: Qui Nov 17, 2011 00:11
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Função_0209

Mensagempor ivanilda » Seg Dez 05, 2011 23:22

Oi rhodry, meu nome e Ivanilda, também faço o redefor.... pensei em comecar a resolver por matrizes e determinantes.....acredito ser este o caminho...
ivanilda
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Dez 05, 2011 23:14
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: formado

Re: Função_0209

Mensagempor vanessa_mat » Ter Dez 06, 2011 00:05

rhodry escreveu:o gráfico segue em anexo:
O gráfico que segue representa uma função polinomial f, do segundo grau. Os pontos
A = (1, 0), B = (4, 6) e C = (4,5, 10,5) pertencem a esse gráfico.
a) Determine a lei de formação de f.


comecei achando Y= ax^2 +bx+c o c é onde corta no eixo y
temos dois valores para montar um sistema: A( 1,0), substitui o valor de x e de y na expressão, depois substitui B( 4,6) tb na expressão, fica ~dois sistemas em função de a e b. Acha o a e o b e substitui na formação y = ax^2 +bx +c. Espero ter ajudado.

Quanto ao exercício 1 se alguém puderme dar uma ajudar??? em falar em ajuda alguém do redefor de matemática conseguiu começar o exercício da DE???
vanessa_mat
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Seg Nov 21, 2011 16:58
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Função_0209

Mensagempor Wanzinha » Ter Dez 06, 2011 00:15

Rosana...veja se é isso?
na 1b m2 apliquei a definição de modulo e achei { (3+y,x-3)e(-3+y,x+3)}
Wanzinha
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Out 24, 2011 02:31
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Função_0209

Mensagempor rhodry » Ter Dez 06, 2011 18:40

Exe1
olá colegas, desenvolvi atribuindo valores para x e y, donde a sua soma terá que ser igual 1, perceberemos que poderemos encontrar vários pontos ordenados.
exemplo:
x + y = 1
-2+1=1
x - y = 1
4-3=1
-x + y = 1
-5+6=1
-x - y = 1
-5-(-6)=1
........
Percebe que teremos infinitos pontos?
Se quiserem compartilhar e-mail:
rhodry_jr@hotmail.com
Editado pela última vez por rhodry em Ter Dez 06, 2011 18:45, em um total de 1 vez.
rhodry
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Out 25, 2011 17:59
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Função_0209

Mensagempor rhodry » Ter Dez 06, 2011 18:42

Rosana Vieira escreveu:Olá rhodry, você já resolveu o exercício 1a e 1b e você pode me ajudar a terminar 1b)| x – y | = 3
x – y = 3
x = 3 + y
y = 3 – x


olá Rosana me mande um e-mail:
rhodry_jr@hotmail.com
rhodry
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Out 25, 2011 17:59
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Função_0209

Mensagempor 1000ton » Qui Dez 08, 2011 21:31

rhodry escreveu:
Rosana Vieira escreveu:Olá rhodry, você já resolveu o exercício 1a e 1b e você pode me ajudar a terminar 1b)| x – y | = 3
x – y = 3
x = 3 + y
y = 3 – x


olá Rosana me mande um e-mail:
rhodry_jr@hotmail.com

x dc
1000ton
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Nov 06, 2011 08:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: Função_0209

Mensagempor ted41 » Qui Dez 08, 2011 22:43

f(x) = ax² + bx + c
Sub. A (1, 0) temos:

(1) a + b + c = 0

Sub. B (4, 6) temos:

(2) 16a + 4b + c = 6

Para C (9/2, 21/2)

(3) 81a + 18b + 4c = 42

Logo teremos um sistema de três equações com três incógnitas
a + b + c = 0
16a + 4b + c = 6
81a + 18b + 4c = 42
Resolvendo o sistemas temos que a = 2, b = -8 e c = 6, assim f(x) = 2x² - 8x + 6.

b) (2,5) Determine as coordenadas do vértice dessa parábola
xv = - b/2a
xv = 2

yv = 2 . 22 – 8. 2 + 6
yv = - 2
As coordenadas do vértice dessa parábola é (2, -2)

De uma olhada eu fiz dessa forma

A primeira eu ainda não fiz se alguém tiver um ideia por favor acenda a luz
Editado pela última vez por ted41 em Qui Dez 08, 2011 22:56, em um total de 3 vezes.
ted41
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Nov 17, 2011 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Função_0209

Mensagempor ted41 » Qui Dez 08, 2011 22:45

A primeira eu ainda não fiz se alguém tiver um ideia por favor acenda a luz
ted41
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Nov 17, 2011 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado


Voltar para Funções

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59