• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função_0209

Função_0209

Mensagempor rhodry » Seg Dez 05, 2011 21:04

o gráfico segue em anexo:
O gráfico que segue representa uma função polinomial f, do segundo grau. Os pontos
A = (1, 0), B = (4, 6) e C = (4,5, 10,5) pertencem a esse gráfico.
a) Determine a lei de formação de f.
Anexos
Gráfico_0209.JPG
rhodry
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Out 25, 2011 17:59
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Função_0209

Mensagempor Rosana Vieira » Seg Dez 05, 2011 22:52

Olá rhodry, você já resolveu o exercício 1a e 1b e você pode me ajudar a terminar 1b)| x – y | = 3
x – y = 3
x = 3 + y
y = 3 – x
Rosana Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 74
Registrado em: Qui Nov 17, 2011 00:11
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Função_0209

Mensagempor ivanilda » Seg Dez 05, 2011 23:22

Oi rhodry, meu nome e Ivanilda, também faço o redefor.... pensei em comecar a resolver por matrizes e determinantes.....acredito ser este o caminho...
ivanilda
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Dez 05, 2011 23:14
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: formado

Re: Função_0209

Mensagempor vanessa_mat » Ter Dez 06, 2011 00:05

rhodry escreveu:o gráfico segue em anexo:
O gráfico que segue representa uma função polinomial f, do segundo grau. Os pontos
A = (1, 0), B = (4, 6) e C = (4,5, 10,5) pertencem a esse gráfico.
a) Determine a lei de formação de f.


comecei achando Y= ax^2 +bx+c o c é onde corta no eixo y
temos dois valores para montar um sistema: A( 1,0), substitui o valor de x e de y na expressão, depois substitui B( 4,6) tb na expressão, fica ~dois sistemas em função de a e b. Acha o a e o b e substitui na formação y = ax^2 +bx +c. Espero ter ajudado.

Quanto ao exercício 1 se alguém puderme dar uma ajudar??? em falar em ajuda alguém do redefor de matemática conseguiu começar o exercício da DE???
vanessa_mat
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Seg Nov 21, 2011 16:58
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Função_0209

Mensagempor Wanzinha » Ter Dez 06, 2011 00:15

Rosana...veja se é isso?
na 1b m2 apliquei a definição de modulo e achei { (3+y,x-3)e(-3+y,x+3)}
Wanzinha
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Out 24, 2011 02:31
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Função_0209

Mensagempor rhodry » Ter Dez 06, 2011 18:40

Exe1
olá colegas, desenvolvi atribuindo valores para x e y, donde a sua soma terá que ser igual 1, perceberemos que poderemos encontrar vários pontos ordenados.
exemplo:
x + y = 1
-2+1=1
x - y = 1
4-3=1
-x + y = 1
-5+6=1
-x - y = 1
-5-(-6)=1
........
Percebe que teremos infinitos pontos?
Se quiserem compartilhar e-mail:
rhodry_jr@hotmail.com
Editado pela última vez por rhodry em Ter Dez 06, 2011 18:45, em um total de 1 vez.
rhodry
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Out 25, 2011 17:59
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Função_0209

Mensagempor rhodry » Ter Dez 06, 2011 18:42

Rosana Vieira escreveu:Olá rhodry, você já resolveu o exercício 1a e 1b e você pode me ajudar a terminar 1b)| x – y | = 3
x – y = 3
x = 3 + y
y = 3 – x


olá Rosana me mande um e-mail:
rhodry_jr@hotmail.com
rhodry
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Out 25, 2011 17:59
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Função_0209

Mensagempor 1000ton » Qui Dez 08, 2011 21:31

rhodry escreveu:
Rosana Vieira escreveu:Olá rhodry, você já resolveu o exercício 1a e 1b e você pode me ajudar a terminar 1b)| x – y | = 3
x – y = 3
x = 3 + y
y = 3 – x


olá Rosana me mande um e-mail:
rhodry_jr@hotmail.com

x dc
1000ton
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Nov 06, 2011 08:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: Função_0209

Mensagempor ted41 » Qui Dez 08, 2011 22:43

f(x) = ax² + bx + c
Sub. A (1, 0) temos:

(1) a + b + c = 0

Sub. B (4, 6) temos:

(2) 16a + 4b + c = 6

Para C (9/2, 21/2)

(3) 81a + 18b + 4c = 42

Logo teremos um sistema de três equações com três incógnitas
a + b + c = 0
16a + 4b + c = 6
81a + 18b + 4c = 42
Resolvendo o sistemas temos que a = 2, b = -8 e c = 6, assim f(x) = 2x² - 8x + 6.

b) (2,5) Determine as coordenadas do vértice dessa parábola
xv = - b/2a
xv = 2

yv = 2 . 22 – 8. 2 + 6
yv = - 2
As coordenadas do vértice dessa parábola é (2, -2)

De uma olhada eu fiz dessa forma

A primeira eu ainda não fiz se alguém tiver um ideia por favor acenda a luz
Editado pela última vez por ted41 em Qui Dez 08, 2011 22:56, em um total de 3 vezes.
ted41
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Nov 17, 2011 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Função_0209

Mensagempor ted41 » Qui Dez 08, 2011 22:45

A primeira eu ainda não fiz se alguém tiver um ideia por favor acenda a luz
ted41
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Nov 17, 2011 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado


Voltar para Funções

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.