• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Modular

Função Modular

Mensagempor Wanzinha » Sáb Dez 03, 2011 19:35

Identifique o conjunto dos pontos (x, y) tais que:
| x | + | y | = 1
então eu comecei assim:
De |x|+ |y|= 1 temos que |y|=1-|x|, mas 1-|x|> ou = 0, assim devemos ter que:
1-|x|> ou = 0
-|x|> ou = -1 (x -1)
|x|< ou = 1
Mas |x|< ou = 1 ; -1 < ou = x < ou = 1. Com isso vemos que teremos que
analisar o valor de y apenas para o caso em que -1 < ou = x < ou = 1.
será isso??
Wanzinha
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Out 24, 2011 02:31
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Função Modular

Mensagempor joaofonseca » Sáb Dez 03, 2011 21:13

Intuitivamente, é facíl de observar que quaisquer que sejam os valores que y e x tomem o valor absoluto devolve sempre valores positivos.Logo quais são os dois números positivos cuja soma é igual a um?
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Função Modular

Mensagempor MarceloFantini » Sáb Dez 03, 2011 22:56

Até a parte de devolver positivos está certo, depois sua intuição te engana. Perceba que x=-1 e y=0 atende as condições, ou mesmo x = - \frac{1}{2}, y = - \frac{1}{2}, logo não são apenas números positivos admitidos. A questão tem de ser avaliada em quatro casos:

x \geq 0 e y \geq 0
x \geq 0 e y < 0
x < 0 e y \geq 0
x < 0 e y < 0
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.