• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função - função dentro de função

Função - função dentro de função

Mensagempor jamiel » Qua Ago 31, 2011 20:08

Um corpo de massa m é atraído, quando colocado na superfície da Terra, por uma força gravitacional de intensidade F. Determine a intensidade da força gravitacional sobreesse corpo quando levado para a superfície de um planeta de forma esférica cuja massa é oito vezes maior que a da Terra e cujo raio é quatro vezes maior que o terrestre.

Terra --> F = \left(G * \left(\frac{M * m}{{R}^{2}} \right) \right)

'M = 8M e R' = 4R

'F = \left(G * \left(\frac{8M * m}{{4d}^{2}} \right) \right)

\left( 'F = \left(G * \left(\frac{8M * m}{{\left( 16\right)d}^{2}} \right) \right)\right)

Daí não consigo sair, no gabarito tem F' = F/2. Alguém para ajudar nessa?
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Função - função dentro de função

Mensagempor Caradoc » Sáb Set 03, 2011 23:51

Acho que você se confundiu ao colocar o d ali no meio. Estava praticamente na resposta.

M' = 8M e R' = 4R

F' = \left(G * \left(\frac{8M * m}{{(4R)}^{2}} \right) \right)

F' = \left(G * \left(\frac{8M * m}{{16R^2}} \right) \right)

F' = \left(G * \left(\frac{8}{{16}} \right)\left(\frac{M * m}{{R^2}} \right) \right)

F' = \frac{1}{2}\left(G *\left(\frac{M * m}{{R^2}} \right) \right)

F'= \frac{1}{2}F

Entendido?
Caradoc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qui Dez 16, 2010 17:17
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Função - função dentro de função

Mensagempor jamiel » Dom Set 04, 2011 01:20

rrsrr

Eu consegui resolver já, mas valeu mesmo, de qualquer forma. Às vezes eu dou cada pisada na bola me perdendo em questões fáceis!

F/2 = óbvio, não é? Mas é assim mesmo. Thank you again!
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.