• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Soma dos números inteiros que satisfazem a inequação

Soma dos números inteiros que satisfazem a inequação

Mensagempor maria cleide » Sex Ago 26, 2011 22:54

Qual a soma dos números inteiros que satisfazem a inequação (4x-2)(4-x)$\geq$(x-4)^2
Resolvi desta forma:
16x-4x^2-8+2x$\geq$x^2-8x+16
-5x^2+26x-24$\geq$0


Usando Bhaskara:
x=\frac{-26\pm\sqrt{26^2-4(-5)(-24)}}{2(-5)}.
x=\frac{-26\pm\sqrt{676-480}}{-10}.
x=\frac{-26\pm14}{-10}.

X1=1,2
X2=4

Como o primeiro termo da função é negativo, a concavidade da parábola é voltada para baixo e todos os valores da função entre as raízes será positivo. Assim, a soma dos números inteiros que satisfazem a inequação dada é 2+3+4=9. Está certo? Existe alguma outra forma de resolver a inequação?
maria cleide
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Dom Mai 08, 2011 12:57
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: Soma dos números inteiros que satisfazem a inequação

Mensagempor Molina » Dom Ago 28, 2011 23:11

Boa noite.

Há um erro na passagem do termo -8x da direita para a esquerda. O certo seria:

16x-4x^2-8+2x \geq x^2-8x+16

-5x^2+24x-24 \geq 0


Agora é só prosseguir da mesma maneira :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.