por Aliocha Karamazov » Sáb Jul 09, 2011 02:02
Galera, tenho um exercício de demonstrar as propriedade da imagem de uma função. Sempre que posto no fórum, mostro como tentei fazer o exercício. Dessa vez, o problema é que não sei como demonstrar nesse caso específico. Gostaria de uma ajuda no primeiro exercício, aí eu faço os outros...
Só para deixar claro,

denota a imagem do conjunto X através da função f. X é um subconjunto do domínio. O exercício é esse:
Prove que

Agradeço a quem puder ajudar.
-
Aliocha Karamazov
- Usuário Parceiro

-
- Mensagens: 90
- Registrado em: Qua Mar 16, 2011 17:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por Guill » Dom Jul 10, 2011 09:33
Sejam f(x) e f(y) duas imagens das respectívas funções x e y. Sendo assim:
f(x)?f(y) representa a união das imagens dos conjuntos x e y.
Sabe-se que a imagem de um conjunto é obtida pelos valores de seu domínio. Como x e y são os domínios das funções f(x) e f(y), f(x)?f(y) é o agrupamento das imagens. Sabemos que as imagens f(x) e f(y) são obtidas a partir de x e y. Logo, se reunirmos os termos que foram usados para encontrar as imagens f(x) e f(y) e jogarmos na função, teremos os mesmos valores. Com isso:
f(x?y) = f(x)?f(y)
Poderia ter feito assim:
Seja x e y, conjuntos tais que:
x = {a;b;c;d;e...}
y = {f;g;h;i;j...}
As imagens f(x) e f(y) são:
f(x) = f(a) ; f(b) ; f(c) ; f(d) ; f(e)...
f(y) = f(f) ; f(g) ; f(h) ; f(i) ; f(j)...
Podemos definir assim:
x?y = {a;b;c;d;e...f;g;h;i;j...}
A união das imagens é:
f(x)?f(y) = f(a) ; f(b) ; f(c) ; f(d) ; f(e)...f(f) ; f(g) ; f(h) ; f(i) ; f(j)...
Sabe-se que:
f(x?y) = f(a) ; f(b) ; f(c) ; f(d) ; f(e)...f(f) ; f(g) ; f(h) ; f(i) ; f(j)... pois x?y = {a;b;c;d;e...f;g;h;i;j...}. Sendo assim, podemos determinar que:
f(x?y) = f(x)?f(y)
-

Guill
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Dom Jul 03, 2011 17:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Prove usando a Propriedade Arquimediana...] Propriedade Arq
por alessandro » Seg Abr 16, 2012 19:10
- 1 Respostas
- 1547 Exibições
- Última mensagem por alessandro

Seg Abr 16, 2012 19:12
Sequências
-
- Demonstre!
por Abelardo » Dom Abr 10, 2011 12:01
- 3 Respostas
- 1606 Exibições
- Última mensagem por Abelardo

Dom Abr 10, 2011 17:52
Álgebra Elementar
-
- Racionais: propriedade
por Victor Gabriel » Dom Mai 12, 2013 15:58
- 0 Respostas
- 1322 Exibições
- Última mensagem por Victor Gabriel

Dom Mai 12, 2013 15:58
Álgebra Elementar
-
- [Radiciação Propriedade 6]
por soccol » Sex Set 26, 2014 18:34
- 0 Respostas
- 904 Exibições
- Última mensagem por soccol

Sex Set 26, 2014 18:34
Álgebra Elementar
-
- Propriedade logaritmo - dúvida
por Fernanda Lauton » Sáb Jun 26, 2010 18:27
- 2 Respostas
- 1774 Exibições
- Última mensagem por Fernanda Lauton

Seg Jun 28, 2010 10:12
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.