• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Circular - dúvida!

Função Circular - dúvida!

Mensagempor jamiel » Sáb Jul 02, 2011 04:23

Calcule o valor da expressão(para x = pi/6):

\left(\frac{sin(x)+sin(2x)}{sin(7x)-sin(3x)} \right)

Eu fui resolvendo pelas formulas de adição e subtração, mas não deu o resultado do gabarito. Então, fui tentando resolver, de fato, eu fiz, mas não entendi muito bem o "porquê"

\left(sen a * cos b + sen b * cos a \right)

\left(\frac{1}{2}*\frac{1}{2} + 0.87*0.87 \right)

De fato, se eu cortar sen a e cos a, fico com:

\left(\frac{1}{2}+0.87 \right)


\left(\frac{\sqrt[]{3}+1}{2} \right)

No denominador, eu tenho

\left(sin(7x) - sin(3x) \right)

\left(-\frac{1}{2}*0 - 1 * (-0.87)\right)

De fato, se eu cortar 0 e -0.87, eu fico com

\left(-\frac{1}{2}-1 \right)


\left(-\frac{3}{2} \right)


Por fim,

\left(\frac{\frac{\sqrt[]{3}+1}{2}}{-\frac{3}{2}} \right) 



\left(\frac{-\sqrt[]{3}-1}{3} \right)

Agradeço qualquer ajuda, desde já!
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Função Circular - dúvida!

Mensagempor MarceloFantini » Sáb Jul 02, 2011 18:56

Você pode simplesmente colocar nos senos e calcular quanto dá:

\left( \frac{\sin(\frac{\pi}{6}) - \sin(\frac{2 \pi}{6})}{\sin(\frac{7 \pi}{6}) - \sin(\frac{3 \pi}{6})} \right)
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.