por benni » Ter Jun 14, 2011 15:22
Considere os conjuntos A ={a1, a2, a3} e B ={b1, b2, b3}.Quantas funções podem ser definidas de A para B ? Explicite cada uma destas funções.
-
benni
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Qua Mar 02, 2011 15:06
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matematica
- Andamento: formado
por arima » Ter Jun 14, 2011 23:35
Eu também estou com duvidas nesta questão. Mas acho que podemos fazer um diagrama de flecha fazendo todas as possibilidades de funçoes do conjunto A para o conjunto B.
-
arima
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sáb Out 23, 2010 18:25
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matematica
- Andamento: cursando
por Abner » Dom Jun 19, 2011 20:26
Benni e Arima vcs conseguiram resolver esta questão?
-
Abner
- Usuário Parceiro

-
- Mensagens: 67
- Registrado em: Qua Jan 26, 2011 18:48
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por arima » Seg Jun 20, 2011 17:08
Ainda não fiz. Aquele Tutor não explica direito.
-
arima
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sáb Out 23, 2010 18:25
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matematica
- Andamento: cursando
por FilipeCaceres » Seg Jun 20, 2011 17:27
Acredito que basta fazer isto, para saber a quantidade de funções, façamos o número de elementos de B elevado ao número de elementos de A, assim temos:

, ou seja, temos 27 funções.
Ex.:

Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por Abner » Seg Jun 20, 2011 18:26
Filipe mas o exemplo que vc colocou seria uma função já que a1 se relaciona com b1 e b2 ?
-
Abner
- Usuário Parceiro

-
- Mensagens: 67
- Registrado em: Qua Jan 26, 2011 18:48
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por FilipeCaceres » Seg Jun 20, 2011 21:33
Ignora minha mensagem anterior, vou tentar explicar com mais calma agora.
Dado os conjuntos A ={a1, a2, a3} e B ={b1, b2, b3}.
Primeiro vejamos produto AXB, que neste caso possui 27 pares ordenados.
A×B =

Vejamos agora as relções de AXB,
1º)Podemos ter relações contendo nenhum par ordenado.
2º)Podemos ter relações contendo 1 par ordenado.
3º)Podemos ter relações contendo 2 pares ordenados.
...
nº)Podemos ter relações contendo todos pares ordenados.
Uma forma de contar quantos pares ordenados existem é usando a seguinte identidade:

Desta forma temos um total de

relações.
Para obter todas as funções em A×B, devemos analisar os casos obtidos.
1º) A relação que não tem nunhum par ordenado não é uma função, pois ela não possui qualquer elemento no domínio A e nem mesmo no contradomínio B.
2º) A relação que tem 1 par ordenado não são funções porque em cada caso, apenas um dos elementos de A está associado a elementos de B e pela definição de função, todos os elementos de A deveriam estar associados a elementos de B.
...
nº) A relação que contem todos pares ordenados não é uma função pois um mesmo elemento a em A está associado a dois outros em B.
Enfim, devemos descobrir quais são funções, para que seja uma função todos os elementos de A devem estar ligados a um elemento de B. Desta forma,
Só as relações

,

,

, ...,

são funções em A×B.
Agora devemos classificá-los, como:
Injetoras

é injetora quando

Sobrejetoras

é sobrejetora quando

Bijetoras.

é sobrejetora quando f é injetora e sobrejora ao mesmo tempo.
Espero ter contribuído um pouco.
Como referência deixo.
http://pt.wikipedia.org/wiki/Fun%C3%A7%C3%A3ohttp://pessoal.sercomtel.com.br/matemat ... coes-a.htm
Editado pela última vez por
FilipeCaceres em Ter Jun 21, 2011 01:40, em um total de 1 vez.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por arima » Seg Jun 20, 2011 23:09
Obrigada pela ajuda se não for pedir muito de uma olhada nesse exercício:
. Considere o conjunto de escritores
E = {Luís de Camões, Érico Veríssimo, Jorge Luís Borges}
e o conjunto de obras
O = {A Eneida, Os Lusíadas, O Tempo e o Vento, Ficções}
Construa, se possível, um subconjunto do produto cartesiano E × O que seja:
a) função injetora e não sobrejetora.
ExO={ (Luís de Camões, Os Lusíadas), (Luís de Camões, Ficções), (Érico Veríssimo, O Tempo e o Vento), Érico Veríssimo, Ficções) ,(Jorge Luís Borges, Ficções) }
Portanto não forma função e nem função injetora.
Eu perguntei para uma professora de português e ela disse que todos os autores escreveram ficçoes alem dos livros ja escritos. Será que esta certo o exercício ou ele quer que construa uma funão qualquer?
-
arima
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sáb Out 23, 2010 18:25
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matematica
- Andamento: cursando
por FilipeCaceres » Ter Jun 21, 2011 02:02
Observe que o conjunto E é formado por 3 elementos, sendo assim, para que seja uma função os 3 elementos devem estar relacionados ao conjunto O.
A questão pede que seja injetora, logo, devemos ter que todos os elementos de E devem estar ligados a elementos diferentes em O.
Deste forma temos que,
ExO={(Luís de Camões, Os Lusíadas),(Érico Veríssimo, O Tempo e o Vento), (Jorge Luís Borges, Ficções)}
Que é injetora e não sobrejetora.
Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por arima » Ter Jun 21, 2011 09:59
Obrigada pelo esclarecimento.Abraço.
-
arima
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sáb Out 23, 2010 18:25
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matematica
- Andamento: cursando
por LuizAquino » Ter Jun 21, 2011 17:21
Considerando que A e B são conjuntos com 3 elementos cada, existem três tipos de função que podemos formar de A para B. A figura abaixo ilustra cada um dos tipos.

- funcoes.png (6.02 KiB) Exibido 7018 vezes
Agora, basta contar quantas possibilidades há para cada tipo e explicitá-las.
ObservaçõesFilipeCaceres escreveu:Dado os conjuntos A ={a1, a2, a3} e B ={b1, b2, b3}.
Primeiro vejamos produto AXB, que neste caso possui 27 pares ordenados.

Lembre-se que

. Portanto, nesse caso temos

.
FilipeCaceres escreveu:Desta forma temos um total de

relações.
Pelo que foi exposto antes, temos um total de

relações possíveis.
FilipeCaceres escreveu:Agora devemos classificá-los, como:
Injetoras

é injetora quando

Sobrejetoras

é sobrejetora quando

Bijetoras.

é sobrejetora quando f é injetora e sobrejora ao mesmo tempo.
Cuidado! Lembre-se que há funções que não entram em nenhuma dessas classificações.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por arima » Ter Jun 21, 2011 22:19
Muito obrigada pela ajuda.
-
arima
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sáb Out 23, 2010 18:25
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matematica
- Andamento: cursando
por arima » Ter Jun 21, 2011 22:19
Muito obrigada pela ajuda.
-
arima
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sáb Out 23, 2010 18:25
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matematica
- Andamento: cursando
por cicero » Dom Jun 26, 2011 16:12
FilipeCaceres escreveu:Acredito que basta fazer isto, para saber a quantidade de funções, façamos o número de elementos de B elevado ao número de elementos de A, assim temos:

, ou seja, temos 27 funções.
Ex.:

Observações:
1 - O número de funções não é encontrado da forma com você fez, e sim utliza-se o princípio fundamental da contagem, pois para cada elemento do conjunto A =
{a1; a2; a3} temos três opções, como seuge:
3 x 3 x 3 = 27 funções possíveis.
___ ____ ____
1º 2º 3º
2 - O exemplo acima não é uma função.
Abraço.
-
cicero
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Dom Jun 26, 2011 16:05
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Educação Matemática/Modelagem Matemática
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Funções e Conjuntos
por Gabriel Doria » Qua Jun 20, 2012 01:08
- 0 Respostas
- 674 Exibições
- Última mensagem por Gabriel Doria

Qua Jun 20, 2012 01:08
Funções
-
- introdução à álgebra (conjuntos/funções)
por Amissadai » Sex Ago 19, 2016 16:37
- 0 Respostas
- 1779 Exibições
- Última mensagem por Amissadai

Sex Ago 19, 2016 16:37
Álgebra Elementar
-
- [Conjuntos] Confusão em teoria dos conjuntos numa questão.
por Debora Bruna » Seg Jan 11, 2016 17:44
- 1 Respostas
- 8679 Exibições
- Última mensagem por DanielFerreira

Sáb Jan 23, 2016 16:44
Conjuntos
-
- [Conjuntos] Dúvida sobre conjuntos vazios
por ALPC » Qui Set 18, 2014 18:28
- 5 Respostas
- 6108 Exibições
- Última mensagem por adauto martins

Seg Set 22, 2014 15:44
Conjuntos
-
- [conjuntos]numeros racionais e conjuntos
por fenixxx » Ter Fev 28, 2012 21:35
- 3 Respostas
- 4531 Exibições
- Última mensagem por DanielFerreira

Sex Mar 02, 2012 00:04
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.