• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função - questão dos grilos - vários períodos!

Função - questão dos grilos - vários períodos!

Mensagempor jamiel » Qua Mai 25, 2011 14:27

Os biólogos observaram que a taxa de canto dos grilos em uma certa espécie aparentemente
está relacionada com a temperatura. A tabela a seguir mostra as taxas de canto para várias temperaturas.

T(Fº) |50 |55 |60 |65 |70
Taxa |16 |41 |79 |102 |135

a)Faça um gráfico e identifique o modelo que melhor se ajusta aos dados.
b)Encontre uma equação que representa o modelo.
c)IUse o modelo encontrado para estimar a taxa de canto a 100º


O gráfico está no arquivo em JPG anexado ao post.

O modelo, a primeira olhada, é uma função do tipo y = ax + b, até aí, tudo bem. Mas o problema é q não estou conseguindo encontrar uma equação q englobe todos os períodos do gráfico. Já tentei equação da reta e tudo mais, mas não tow conseguindo. Se eu fizer um sistema por período, até consigo, mas apenas para os valores deste período. Como seria essa equação, como é pedido no enunciado na letra "b)"?

Alguém para dar uma dica?
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Função - questão dos grilos - vários períodos!

Mensagempor demolot » Qua Mai 25, 2011 16:25

Como nao pede analiticamente, voce poderia por esses valores na calculadora e ela dava-lhe e equaçao da recta muito rapido, mas ha a maneira analítica de fazer,

m=\frac{y2-y1}{x2-x1}

tomando como x a Temperatura e y a Taxa
demolot
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Dez 11, 2010 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Informatica
Andamento: cursando

Re: Função - questão dos grilos - vários períodos!

Mensagempor jamiel » Qua Mai 25, 2011 18:23

Pois, é. Como eu disse antes, eu fiz a equação da reta, 119/20, mas fica impreciso, não tem como eu fazer uma função "geral" para todo o gráfico. Alguns valores batem, mas aproximados, não certinho. Agora, seu fizer por período, sim, aí dá certo. É isso q está me deixando com a pulga atr ás da orelha!

vlw ...
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Função - questão dos grilos - vários períodos!

Mensagempor MarceloFantini » Qua Mai 25, 2011 23:40

identifique o modelo que melhor se ajusta aos dados

Isso não quer dizer "encontre uma curva que passe por todos os pontos". É possível, mas não quer dizer que é a melhor curva. Prosseguir com a sua idéia de manter uma reta é o caminho a se tomar, mas não se preocupe se nem todos os pontos estiverem nela: o importante é que o desvio da reta em relação a esses pontos seja pequeno.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}