• Anúncio Global
    Respostas
    Exibições
    Última mensagem

As três sequências

As três sequências

Mensagempor joaofonseca » Ter Mai 17, 2011 17:57

Hoje deparei-me com um problema que não consegui decifrar a solução.

Dadas as seguintes sequências:

(a_{n})=n

(b_{n})=\frac{4}{n}

(c_{n})=(-1)^{n}\cdot n

Calcule a ordem k para a qual os termos das diferentes sequências são iguais.
Pelo que entendi tem de se achar uma ordem k tal que (a_{k})=(b_{k})=(c_{k}).

Eu consegui resolver graficamente, com a ajuda da máquina. Mas como faço de forma algébrica?
Obrigado.
Editado pela última vez por joaofonseca em Ter Mai 17, 2011 18:35, em um total de 1 vez.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: As três sequências

Mensagempor FilipeCaceres » Ter Mai 17, 2011 18:35

Ao invés de (a_{k})=(b_{k})=(c_{n}) não seria (a_{k})=(b_{k})=(c_{k})?

Eu faria assim, caso fosse conforme descrito abaixo
(a_{k})=(b_{k})=(c_{k})

k=\frac{4}{k}=(-1)^k.k\, ;para\,k\neq 0

k^2=4

Então temos que
k=\pm 2

:y:
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: As três sequências

Mensagempor joaofonseca » Ter Mai 17, 2011 18:44

Já corrigi o erro.

FilipeCaceres escreveu:k=\frac{4}{k}=(-1)^{k}\cdot k


Como passas deste conjunto de igualdades para o resultado final?

Obrigado
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: As três sequências

Mensagempor FilipeCaceres » Ter Mai 17, 2011 18:51

Se a_n=n então a_k=k, similarmente se faz para o resto.
Tendo a igualdade é só substituir os valores.Seja,
(a_{k})=(b_{k})=(c_{k})

Então,
k=\frac{4}{k}=(-1)^k.k\, ;para\,k\neq 0

Pegando a primeira igualdade temos,
k=\frac{4}{k}\, ;para\,k\neq 0

Logo,
k^2=4

Portanto,
k=\pm 2

Observe que ambos valores (+2,-2) também servem para a segunda igualdade e desta forma temos como solução os dois,ou seja.
k=\pm 2

Compreendeu?

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: As três sequências

Mensagempor joaofonseca » Ter Mai 17, 2011 19:12

Então é como se fosse um sistema linear de três equações com 2 incógnitas!


Obrigado
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: As três sequências

Mensagempor MarceloFantini » Ter Mai 17, 2011 19:33

Provavelmente k é natural, então a única resposta válida é k=2.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}