• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Radiciação - dúvida

Radiciação - dúvida

Mensagempor Danilo » Sex Ago 10, 2012 18:33

Dúvida em mais um exercício, lá vai:

\frac{2 + \sqrt[]{3}}{\sqrt[]{2} + \sqrt[]{2 + \sqrt[]{3}}} + \frac{2 - \sqrt[]{3}}{\sqrt[]{2} - \sqrt[]{2 - \sqrt[]{3}}}

Bom, para resolver, eu tentei racionalizar cada fração multiplicando o númerador e denominador com o sinal negativo e depois resolvendo normalmente... e após fazer isso em cada fração eu somo o resultado de cada uma. Depois de várias e várias tentativas aqui estou eu de novo :$ . Há uma maneira mais simples? Ou a maneira que estou fazendo está correta? Segundo o livro, a resposta é \sqrt[]{2}. Grato !
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Radiciação - dúvida

Mensagempor LuizAquino » Sex Ago 10, 2012 19:45

Danilo escreveu:Dúvida em mais um exercício, lá vai:

\frac{2 + \sqrt[]{3}}{\sqrt[]{2} + \sqrt[]{2 + \sqrt[]{3}}} + \frac{2 - \sqrt[]{3}}{\sqrt[]{2} - \sqrt[]{2 - \sqrt[]{3}}}

Bom, para resolver, eu tentei racionalizar cada fração multiplicando o númerador e denominador com o sinal negativo e depois resolvendo normalmente... e após fazer isso em cada fração eu somo o resultado de cada uma. Depois de várias e várias tentativas aqui estou eu de novo :$ . Há uma maneira mais simples? Ou a maneira que estou fazendo está correta? Segundo o livro, a resposta é \sqrt[]{2}. Grato !


Vide esse tópico:

Simplificação
viewtopic.php?f=106&t=7185

Observação

Perceba como é importante fazer uma busca no fórum antes de enviar um tópico. Esse mesmo exercício já estava resolvido!
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Radiciação - dúvida

Mensagempor Danilo » Sex Ago 10, 2012 20:01

LuizAquino escreveu:
Danilo escreveu:Dúvida em mais um exercício, lá vai:

\frac{2 + \sqrt[]{3}}{\sqrt[]{2} + \sqrt[]{2 + \sqrt[]{3}}} + \frac{2 - \sqrt[]{3}}{\sqrt[]{2} - \sqrt[]{2 - \sqrt[]{3}}}

Bom, para resolver, eu tentei racionalizar cada fração multiplicando o númerador e denominador com o sinal negativo e depois resolvendo normalmente... e após fazer isso em cada fração eu somo o resultado de cada uma. Depois de várias e várias tentativas aqui estou eu de novo :$ . Há uma maneira mais simples? Ou a maneira que estou fazendo está correta? Segundo o livro, a resposta é \sqrt[]{2}. Grato !


Vide esse tópico:

Simplificação
viewtopic.php?f=106&t=7185

Observação

Perceba como é importante fazer uma busca no fórum antes de enviar um tópico. Esse mesmo exercício já estava resolvido!


:oops:

Desculpa e muito obrigado novamente ! :y:
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.