![\frac{2+\sqrt[]{3}}{\sqrt[]{2}+\sqrt[]{2+\sqrt[]{3}}}+\frac{2-\sqrt[]{3}}{\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}}} \frac{2+\sqrt[]{3}}{\sqrt[]{2}+\sqrt[]{2+\sqrt[]{3}}}+\frac{2-\sqrt[]{3}}{\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}}}](/latexrender/pictures/187def60b0b7259032627642ead1730a.png)
O exercício pede para simplificar essa expressão, na resposta esta
![\sqrt[]{2} \sqrt[]{2}](/latexrender/pictures/f21662d1cabab6e8b273a4b6f1cd663a.png)
tentei raciona-la fazendo a diferença de dois quadrados, mas cai em uma conta muito dificil
![\frac{2+\sqrt[]{3}}{\sqrt[]{2}+\sqrt[]{2+\sqrt[]{3}}}+\frac{2-\sqrt[]{3}}{\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}}} \frac{2+\sqrt[]{3}}{\sqrt[]{2}+\sqrt[]{2+\sqrt[]{3}}}+\frac{2-\sqrt[]{3}}{\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}}}](/latexrender/pictures/187def60b0b7259032627642ead1730a.png)
![\sqrt[]{2} \sqrt[]{2}](/latexrender/pictures/f21662d1cabab6e8b273a4b6f1cd663a.png)


![\displaystyle\frac{[(2+\sqrt3)(\sqrt2-\sqrt{2-\sqrt3})]+[(2-\sqrt3)(\sqrt2+\sqrt{2+\sqrt3})]}{(\sqrt2+\sqrt{2+\sqrt3})(\sqrt2-\sqrt{2-\sqrt3})} \displaystyle\frac{[(2+\sqrt3)(\sqrt2-\sqrt{2-\sqrt3})]+[(2-\sqrt3)(\sqrt2+\sqrt{2+\sqrt3})]}{(\sqrt2+\sqrt{2+\sqrt3})(\sqrt2-\sqrt{2-\sqrt3})}](/latexrender/pictures/a59c36307c1b432197f1c1f7efca3de0.png)



![\left[{1-\sqrt{2}\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)\right] \left[{1-\sqrt{2}\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)\right]](/latexrender/pictures/73500608ed6818c25b5897080160b25e.png)
![\left[{1+\sqrt{2}\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)\right]= \left[{1+\sqrt{2}\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)\right]=](/latexrender/pictures/6942ab25ae4806e0f3bfcb2f0a1525f5.png)
![= 1^2-\left[\sqrt{2}\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)\right]^2 = 1^2-\left[\sqrt{2}\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)\right]^2](/latexrender/pictures/9cbd1086bbc46f7167f8b562eb21f5bd.png)







![\left[{1+\sqrt{2}\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)\right] \left[{1+\sqrt{2}\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)\right]](/latexrender/pictures/94a4d84b15d30876fb711a96e802684a.png)

























e
.
.





Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes