por TAE » Sex Mai 11, 2012 18:15
Olá pessoal do fórum, boa tarde!
Como desenvolve:
![\frac{1}{\sqrt[]{5}}+\frac{2}{\sqrt[]{2}}= \frac{1}{\sqrt[]{5}}+\frac{2}{\sqrt[]{2}}=](/latexrender/pictures/cfb2780da7c7beb9df7c5195b5b8ff28.png)
*O exercício dá
![\sqrt[]{2}\simeq1,14 \sqrt[]{2}\simeq1,14](/latexrender/pictures/f7462cfb5dc9848a6197e9e0e8fa7677.png)
;
![\sqrt[]{5}\simeq2,24 \sqrt[]{5}\simeq2,24](/latexrender/pictures/f7e859497acc9c319399863552a19f06.png)
*O resultado não pode ser na forma de número irracional
Resposta:
1,858
Valeu
Editado pela última vez por
TAE em Sáb Mai 12, 2012 16:36, em um total de 1 vez.
“O tolo, quando erra,queixa-se dos outros; o sábio queixa-se de si mesmo.” (Sócrates, 469-399, AC).
-
TAE
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Ter Mar 20, 2012 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: TÉC. ELETRÔNICA
- Andamento: formado
por MarceloFantini » Sáb Mai 12, 2012 14:37
Você procurou racionalizar os denominadores? Quais foram suas tentativas?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por TAE » Sáb Mai 12, 2012 16:38
Consegui, pulei a parte da radiciação porque não consegui escrever no editor de fórmulas, quando multiplicava uma raiz pela outra, uma ficava em cima da outra, eu poderia ter tirado o mmc de 5 e 2 pra para resolver?
![\frac{1}{\sqrt[]{5}}+\frac{2}{\sqrt[]{2}}= \frac{\sqrt[]{5}}{5}+\frac{2\sqrt[]{5}}{2}= 0,48+ 1,41= 1,85 \frac{1}{\sqrt[]{5}}+\frac{2}{\sqrt[]{2}}= \frac{\sqrt[]{5}}{5}+\frac{2\sqrt[]{5}}{2}= 0,48+ 1,41= 1,85](/latexrender/pictures/9b60fbaa875751f8163706845afbf7fd.png)
“O tolo, quando erra,queixa-se dos outros; o sábio queixa-se de si mesmo.” (Sócrates, 469-399, AC).
-
TAE
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Ter Mar 20, 2012 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: TÉC. ELETRÔNICA
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Nível fácil - FCC e UPE
por ingridgusmao » Dom Jun 12, 2011 02:41
- 1 Respostas
- 7526 Exibições
- Última mensagem por nietzsche

Sex Jun 24, 2011 22:54
Conjuntos
-
- dúvida fácil
por TAE » Ter Mai 22, 2012 21:04
- 3 Respostas
- 1959 Exibições
- Última mensagem por DanielFerreira

Qui Mai 24, 2012 11:04
Álgebra Elementar
-
- PARECE FÁCIL - Cálculo de sin(x+y)
por Taah » Dom Mar 28, 2010 13:39
- 6 Respostas
- 4456 Exibições
- Última mensagem por Taah

Seg Mar 29, 2010 16:36
Desafios Difíceis
-
- Progressão Geometrica (Fácil)
por DanielRJ » Sex Out 01, 2010 16:13
- 2 Respostas
- 2779 Exibições
- Última mensagem por DanielRJ

Sex Out 01, 2010 16:44
Progressões
-
- funcoes, esse e facil
por tumiattibrz » Qui Mar 10, 2011 01:10
- 1 Respostas
- 1291 Exibições
- Última mensagem por profmatematica

Sex Mar 25, 2011 19:06
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.