• Anúncio Global
    Respostas
    Exibições
    Última mensagem

vetores coplanares e não colineares, como provar!!

vetores coplanares e não colineares, como provar!!

Mensagempor luizpower » Seg Abr 16, 2012 17:26

Olá, sou novato no fórum, mas ja tenho uma dúvida =/.

Bom preciso da resposta para hoje, já tentei várias coisas , mas não encaixou nada ainda.

"Se a, b e c fossem coplanares e não colineares então um desses vetores, por exemplo, b, seria combinação linear dos outros dois, isto é, existiriam escalares, não todos nulos, ?,? ? IR tais que (1) b= ?a + ?c. Assim, a equação (1) ficaria: (x + y ? )a + (y ? + z)c = 0
Se a e c fossem colineares, então a = ?c , ? ? 0, e a equação (2) ficaria:

(x? + y??)c + (y ? + z)c = 0

Onde x? + y?? + y ? + z = 0 ou z = - (x? + y?? + y ?), e a equação (1) teria uma solução não nula x, y ? IR, z = -(x? + y?? + y ?), contrariando novamente a hipótese.
Logo a e c não são colineares, e portanto são L.I.
Se na equação (2) um dos coeficientes fosse não nulo, por exemplo, se x + y? ? 0, teríamos: a = - (y ? + z )c/(x + y ?). a e c seriam L.D., absurdo.
Logo, os vetores a, b e c não podem ser coplanares e portanto são L.I.

Como provar isso ainda hoje :-O

ja tentei fazer assim, mas vi que não iria para lugar nenhum :

Se o vetor b é combinação linear dos vetores a e c, sendo a = (-1,2,4), b = (-7,7,7) e c = (5,-3,1), então b = ?a + ?c, com , ? e ? escalares.
Onde (-7,7,7) = ? (-1,2,4) + ? (5,-3,1) (-7,7,7) = (-?,2?,4?) + (5 ?,-3 ?, ?)
de onde tiramos um sistema de 3 equações lineares: -7 = -? + 5 ? 7 = 2? - 3 ? 7 = 4? + ?
Se encontrarmos um valor de ? e um valor de ? que satisfaçam as três equações, então b = ? a + ?c , ou seja, b é combinação linear de a e c.
Escolhendo quaisquer 2 equações, determina-se ? e ?.
Usando a terceira equação para checar os valores. Encontramos que: ? = 2 ? = -1
7 = 2? - 3 ? * (-2) -7 = 7 ? 7 = 4? + ?
-14 = -4? +6 ? ? = -1
7 = 4? + ?
Substituindo o valor de ? em 7 = 4? + ?, temos:
7 = 4? -1
? = 8/4 = 2
Portanto, b é combinação linear de a e c.
Se a e c fossem colineares, então a = ?c , ? ? 0, temos:
(-?,2?,4?) = ?(5?,-3?,?)
(-?,2?,4?) = (5??,-3??,??)
5?? = -?
-3?? = 2?
?? = 4?
? = -2/5
? = 4/3
? = -8
Portanto são L.I.
a = - (y? + z )c/(x + y ?)
= - (5?,-3?, ?)/(-?,2?,4?)
= (5/2,3/4,1/8)
Portanto L.I.

o formatação aqui pode não sair boa, pq eu estava preparando para no powerpoint.
Vi que estava errado. E trravou =/ preciso de uma Luz ainda hoje , antes das 6 horas.

Desde já obrigado.
luizpower
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Abr 16, 2012 17:16
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia elétrica
Andamento: cursando

Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59