por Danilo » Sáb Mar 17, 2012 23:53
Pessoal, estou postando esses exercício aqui porque tenho que entregá-los segunda feira, e estous tentando ao máximo resolver sozinho, mas alguns que está difícil chegar a um resultado em tempo hábil. Fiquei o dia todo estudando sobre os números reais e as ''regras'' que devemos seguir nas desigualdades no livro calculo a uma variavel . Enfim, vamos ao exercício. Preciso mostrar que 2 proposições são verdadeiras.
São elas:
(a) Se 1,3 ? x ? 1,4 e 2,8 ? y ? 2,9 , então - 1,6 ? x - y ? - 1,4.
(b) Se 2,9 ? x ? 3 e 1,7 ? y ? 1,8 , então 2,9/1,8 ? x/y ? 3/1,7
Sei que para provar que uma proposição é falta basta exibir um contra exemplo, ou que a hipótese e a tese devem ser igualmente satisfeitas. Mas não sei como aplicar nessas inequações. Se alguem puder dar um caminho, agradeço. Enquanto isso vou tentando aqui... obrigado aeww
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Dom Mar 18, 2012 01:15
Danilo escreveu:(a) Se 1,3 ? x ? 1,4 e 2,8 ? y ? 2,9 , então - 1,6 ? x - y ? - 1,4.
Se

, então

. Ou ainda, podemos escrever que

.
Somando membro a membro essa última inequação com a inequação

, temos que:


Danilo escreveu:(b) Se 2,9 ? x ? 3 e 1,7 ? y ? 1,8 , então 2,9/1,8 ? x/y ? 3/1,7
Como y é positivo (e não nulo), podemos dizer que:

Além disso, também podemos dizer que:

Multiplicando essa inequação por 2,9 e por 3, obtemos que:


Sendo assim, temos que:

Temos então que:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Danilo » Dom Mar 18, 2012 01:49
Obrigado professor!!!!!
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Nao consigo mostrar
por 380625 » Sáb Jun 02, 2012 16:42
- 1 Respostas
- 1146 Exibições
- Última mensagem por Russman

Sáb Jun 02, 2012 17:52
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada]Mostrar uma expressão.
por amigao » Dom Mai 26, 2013 21:28
- 1 Respostas
- 1071 Exibições
- Última mensagem por e8group

Dom Mai 26, 2013 22:02
Cálculo: Limites, Derivadas e Integrais
-
- Mostrar que é Subespaço Vetorial
por Razoli » Sex Set 26, 2014 22:03
- 3 Respostas
- 1920 Exibições
- Última mensagem por adauto martins

Seg Set 29, 2014 12:33
Álgebra Linear
-
- Derivadas Parciais - Mostrar que:
por Cleyson007 » Ter Nov 04, 2014 16:20
- 1 Respostas
- 1046 Exibições
- Última mensagem por Russman

Ter Nov 04, 2014 22:19
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] Como mostrar esse lim?
por jandercw » Seg Set 19, 2011 17:17
- 1 Respostas
- 1509 Exibições
- Última mensagem por MarceloFantini

Seg Set 19, 2011 17:35
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.