por vanessaclm » Sáb Fev 25, 2012 14:36
(UFRJ 03) Um número natural deixa resto 3, quando dividido por 7, e resto 5, quando dividido por 6. Qual o resto da divisão desse número por 42?
PS: Aqui no gabarito deu 17, não achei esse resultado!

-
vanessaclm
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sáb Fev 25, 2012 14:30
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: NDA
- Andamento: formado
por nathyn » Qui Mar 01, 2012 17:42
Olá, bom, como n é um número natural e pela divisão por 7 sobra 3, então temos que n = 7a + 3 (1ª)
Agora se n dividido por 6 sobra 5, então temos n = 6b + 5 (2ª)
Se vc notar verá que 42 = 6×7
Agora note que multiplicando a 1ª equação por 6 teremos 6n = 42a + 18 (3ª).
E multiplicando a 2ª por 7 teremos 7n = 42b + 35 (4ª)
Agora com esse novo sistema (com a 3ª e a 4ª equação) usamos o método da subtração, ficando:
7n - 6n = 42b + 35 - 42a - 18
n = 42b - 42a + 35 - 18
n = 42(b- a) + 17. Veja que o modelo dessa equação é semelhando a 1ª e a 2ª, logo pela lógica vemos que o 17 é o resto dessa divisão.
Espero ter ajudado...
-
nathyn
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Qua Nov 16, 2011 14:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- SISTEMAS DE NUMERAÇÃO
por metalll666 » Qua Jan 12, 2011 00:49
- 0 Respostas
- 1517 Exibições
- Última mensagem por metalll666

Qua Jan 12, 2011 00:49
Progressões
-
- sistema de numeração
por leticiapires52 » Seg Mai 19, 2014 19:59
- 2 Respostas
- 1818 Exibições
- Última mensagem por Russman

Seg Mai 19, 2014 22:07
Teoria dos Números
-
- Número de divisores e Sistemas de Numeração
por Gustavo R » Sáb Ago 13, 2011 18:05
- 7 Respostas
- 5274 Exibições
- Última mensagem por Molina

Sáb Ago 20, 2011 19:45
Álgebra Elementar
-
- Sistema de Numeração (converte bases)
por 91disakai » Qua Set 26, 2012 11:26
- 6 Respostas
- 4308 Exibições
- Última mensagem por 91disakai

Qua Set 26, 2012 15:19
Álgebra Elementar
-
- [Sistemas de numeração] Achar bases diferentes
por armando » Seg Jun 20, 2016 15:06
- 1 Respostas
- 4944 Exibições
- Última mensagem por DanielFerreira

Sáb Jul 09, 2016 14:30
Teoria dos Números
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.