por nathyn » Qua Fev 15, 2012 16:14
Oie, eu estou estudando o livro "Fundamentos da matemática elementar 2" e para ir para o próximo capitulo faltam só essas 2 quatões que não consegui resolver.=( Me ajudem por favor. =)
1-)
![\frac{2 + \sqrt[]{3}}{\sqrt[]{2} + \sqrt[]{2 + \sqrt[]{3}}} + \frac{2 - \sqrt[]{3}}{\sqrt[]{2} - \sqrt[]{2 - \sqrt[]{3}}} \frac{2 + \sqrt[]{3}}{\sqrt[]{2} + \sqrt[]{2 + \sqrt[]{3}}} + \frac{2 - \sqrt[]{3}}{\sqrt[]{2} - \sqrt[]{2 - \sqrt[]{3}}}](/latexrender/pictures/9b4c6786a084bd620c64b381db12716f.png)
Resp:
![\sqrt[]{2} \sqrt[]{2}](/latexrender/pictures/f21662d1cabab6e8b273a4b6f1cd663a.png)
Eu multipliquei cada fração pelo inverso do seu denominador, para eliminar as raizes do mesmo e ficou:
![\frac{\left(2 + \sqrt[]{3} \right)\left(\sqrt[]{2} - \sqrt[]{2 + \sqrt[]{3}} \right)}{2 - 2 -\sqrt[]{3}} + \frac{\left(2 - \sqrt[]{3} \right)\left(\sqrt[]{2} + \sqrt[]{2 - \sqrt[]{3}} \right)}{2 - 2 +\sqrt[]{3}} \frac{\left(2 + \sqrt[]{3} \right)\left(\sqrt[]{2} - \sqrt[]{2 + \sqrt[]{3}} \right)}{2 - 2 -\sqrt[]{3}} + \frac{\left(2 - \sqrt[]{3} \right)\left(\sqrt[]{2} + \sqrt[]{2 - \sqrt[]{3}} \right)}{2 - 2 +\sqrt[]{3}}](/latexrender/pictures/c156b2440bf122cb7cbc7eeafcbe3205.png)
Como o denominador da primeira era
![- \sqrt[]{3} - \sqrt[]{3}](/latexrender/pictures/5146764d594e41cc1e0df3c201b01a02.png)
, o sinal do numerador da primeira foram mudados, ficando:
![\frac{-2 \sqrt[]{2} + 2\sqrt[]{2 + \sqrt[]{3}} -\sqrt[]{6} + \sqrt[]{6 + 3\sqrt[]{3}}}{\sqrt[]{3}} + \frac{2 \sqrt[]{2} + 2\sqrt[]{2 - \sqrt[]{3}} -\sqrt[]{6} - \sqrt[]{6 - 3\sqrt[]{3}}}{\sqrt[]{3}} \frac{-2 \sqrt[]{2} + 2\sqrt[]{2 + \sqrt[]{3}} -\sqrt[]{6} + \sqrt[]{6 + 3\sqrt[]{3}}}{\sqrt[]{3}} + \frac{2 \sqrt[]{2} + 2\sqrt[]{2 - \sqrt[]{3}} -\sqrt[]{6} - \sqrt[]{6 - 3\sqrt[]{3}}}{\sqrt[]{3}}](/latexrender/pictures/b4435ab6b21a3b089fcf9ce7455b9d0a.png)
Calculando...
![\frac{2\sqrt[]{2 + \sqrt[]{3}} - 2\sqrt[]{6} + \sqrt[]{6 + 3\sqrt[]{3}} - \sqrt[]{6 - 3\sqrt[]{3}}}{\sqrt[]{3}} \frac{2\sqrt[]{2 + \sqrt[]{3}} - 2\sqrt[]{6} + \sqrt[]{6 + 3\sqrt[]{3}} - \sqrt[]{6 - 3\sqrt[]{3}}}{\sqrt[]{3}}](/latexrender/pictures/064eac5f877c0f5c68ae7391c1b032a1.png)
Racionalizando o denominador fica:
![\frac{2\sqrt[]{6 + 3\sqrt[]{3}} -6\sqrt[]{2} + \sqrt[]{18 + 9\sqrt[]{3}} - \sqrt[]{18 - 9\sqrt[]{3}}}{3} \frac{2\sqrt[]{6 + 3\sqrt[]{3}} -6\sqrt[]{2} + \sqrt[]{18 + 9\sqrt[]{3}} - \sqrt[]{18 - 9\sqrt[]{3}}}{3}](/latexrender/pictures/57d4664c62c4af3e7dd33bd2a9571f49.png)
Daí então não sei como resolver =/
2-) Calcule o valor de x sendo,
![x = \sqrt[]{2 + \sqrt[]{2 + \sqrt[]{2 + \sqrt[]{2 + ...}}}} x = \sqrt[]{2 + \sqrt[]{2 + \sqrt[]{2 + \sqrt[]{2 + ...}}}}](/latexrender/pictures/f3d74d2ceb01df84aad6fab06d832cda.png)
...
-
nathyn
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Qua Nov 16, 2011 14:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por LuizAquino » Qui Fev 16, 2012 11:08
nathyn escreveu:1)

nathyn escreveu:Eu multipliquei cada fração pelo inverso do seu denominador, para eliminar as raizes do mesmo e ficou:

Como o denominador da primeira era

, o sinal do numerador da primeira foram mudados, ficando:

Calculando...
![\frac{2\sqrt{2 + \sqrt{3}} - 2\sqrt{6} + \sqrt{6 + 3\sqrt{3}} - \sqrt[]{6 - 3\sqrt{3}}}{\sqrt{3}} \frac{2\sqrt{2 + \sqrt{3}} - 2\sqrt{6} + \sqrt{6 + 3\sqrt{3}} - \sqrt[]{6 - 3\sqrt{3}}}{\sqrt{3}}](/latexrender/pictures/db385710397671a0bf594f13dd866af4.png)
Você errou essa última passagem. O correto seria:

Racionalizando o denominador, temos que:

Essa expressão será equivalente a algum número. Vamos chamar esse número de x. Temos então:


Elevando ambos os membros da equação ao quadrado, temos que:

Vamos desenvolver separadamente cada uma das partes que aparecem no segundo membro da equação.
Parte 1)



= 72
Parte 2)
![= 4\left(\sqrt{6 + 3\sqrt{3}}+ \sqrt{6 - 3\sqrt{3}}\right)\left[\sqrt{3}\left(\sqrt{6 + 3\sqrt{3}} - \sqrt{6 - 3\sqrt{3}}\right)\right] = 4\left(\sqrt{6 + 3\sqrt{3}}+ \sqrt{6 - 3\sqrt{3}}\right)\left[\sqrt{3}\left(\sqrt{6 + 3\sqrt{3}} - \sqrt{6 - 3\sqrt{3}}\right)\right]](/latexrender/pictures/f3244a2c11d146dfc031e7970c6b8d07.png)
![= 4\sqrt{3}\left[\left(\sqrt{6 + 3\sqrt{3}}\right)^2 - \left(\sqrt{6 - 3\sqrt{3}}\right)^2\right] = 4\sqrt{3}\left[\left(\sqrt{6 + 3\sqrt{3}}\right)^2 - \left(\sqrt{6 - 3\sqrt{3}}\right)^2\right]](/latexrender/pictures/ccb61b040cd8b2178a62c48f63da13c8.png)

= 72
Parte 3)![\left(\sqrt{18 + 9\sqrt{3}} - \sqrt{18 - 9\sqrt{3}}\right)^2 = \left[\sqrt{3}\left(\sqrt{6 + 3\sqrt{3}} - \sqrt{6 - 3\sqrt{3}}\right)\right]^2 \left(\sqrt{18 + 9\sqrt{3}} - \sqrt{18 - 9\sqrt{3}}\right)^2 = \left[\sqrt{3}\left(\sqrt{6 + 3\sqrt{3}} - \sqrt{6 - 3\sqrt{3}}\right)\right]^2](/latexrender/pictures/bea44d2650b15af1cc17b8b381c434eb.png)

![= 3\left[12 - 2\sqrt{6^2 - \left(3\sqrt{3}\right)^2}\right] = 3\left[12 - 2\sqrt{6^2 - \left(3\sqrt{3}\right)^2}\right]](/latexrender/pictures/22e38c011ff4c9f129967f3e21ea5574.png)
![= 3\left[12 - 2\sqrt{36 - 27}\right] = 3\left[12 - 2\sqrt{36 - 27}\right]](/latexrender/pictures/240d76de4c8e260dd29409bfbf4997f1.png)
= 18
Substituindo os valores das partes na equação, temos que:



Resolvendo essa equação, obtemos

e

.
Analisando a expressão numérica original, percebemos que ela deve ser positiva. Portanto, a única possibilidade válida é

.
nathyn escreveu:2-) Calcule o valor de x sendo,

Elevando ambos os membros ao quadrado, temos que:

As reticências que aparecem dentro do radical, representam que podemos continuar o desenvolvimento da expressão seguindo o mesmo padrão. Sendo assim, podemos escrever que:



Resolvendo essa equação, temos que

e

.
Como x é o resultado de uma raiz quadrada, ele deve ser um valor positivo. Portanto, a única possibilidade válida é x = 2.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por nathyn » Qui Fev 16, 2012 13:01
Muuuuuito Obrigadaa!
Fui fazendo acompanhando e entendi tudinhoo, brigadão msmo!
Fica com Deus .)
Brigadaaa!
-
nathyn
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Qua Nov 16, 2011 14:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Simplificação - Ajuda Dúvidas em relação a simplificação
por wgf » Qui Mai 16, 2013 12:56
- 1 Respostas
- 2232 Exibições
- Última mensagem por DanielFerreira

Dom Mai 19, 2013 18:03
Equações
-
- [Simplificação]Fazer a simplificação da resposta
por neoreload » Qua Fev 04, 2015 05:50
- 3 Respostas
- 2687 Exibições
- Última mensagem por neoreload

Sáb Fev 07, 2015 22:10
Equações
-
- [SIMPLIFICAÇÃO] Simplificação expoentes
por brunnkpol » Ter Mai 07, 2013 17:00
- 1 Respostas
- 1719 Exibições
- Última mensagem por DanielFerreira

Sex Mai 10, 2013 00:40
Aritmética
-
- Simplificação!
por carmem » Ter Mai 12, 2009 23:34
- 2 Respostas
- 1886 Exibições
- Última mensagem por carmem

Qua Mai 13, 2009 11:01
Álgebra Elementar
-
- Simplificação
por Jamilly » Qua Mar 17, 2010 21:44
- 1 Respostas
- 1942 Exibições
- Última mensagem por Elcioschin

Qua Mar 17, 2010 22:04
Polinômios
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.