por FelipeScheidemantel » Qui Mar 19, 2009 19:19
Boa tarde,
Encontrei este problema numa prova de vestibular:
(UnB-DF)Na física newtoniana, as regras para relacionar a posição
x e o tempo t, medidos a partir de um sistema de coordenadas em
repouso — S —, com a posição x’ e o tempo t’, medidos a partir
de um sistema — S’ — que se move com velocidade V, com
relação ao sistema S, são dadas pelas equações x’ = x – Vt e t’ = t,
que são denominadas transformações de Galileu. Com o advento
da teoria da relatividade especial proposta por Einstein, essas
regras, com o nome de transformações de Lorentz, passaram a ser
dadas por: x’ =

; t’ =

, em que
![\gamma = \frac{1}{\sqrt[]{1 - \frac{V^2}{c^2}}} \gamma = \frac{1}{\sqrt[]{1 - \frac{V^2}{c^2}}}](/latexrender/pictures/f9314637b3f18d228b33d605814bbac1.png)
e c = 300.000 km/s corresponde à velocidade da luz no vácuo,
medida segundo qualquer referencial inercial, pois c é um valor
absoluto. A distância que a luz percorre no vácuo em um ano,
considerando-se que o ano tenha 365 dias e 6 h, é definida como
ano-luz e utilizada para expressar distâncias entre corpos celestes.
Julgue o item abaixo:
Se v’ = x’/t’ e v = x/t, então a relação entre essas velocidades, de acordo com as transformações de Lorentz, é v’ =

, não sendo possível, segundo tais transformações, encontrar velocidade v’ maior que a velocidade da luz.
Tentei resolver o problema de a seguinte maneira:
v’ =

. Anulando-se os coeficientes

, fiquei com

. Em seguida,

. A partir daí, não sei como simplificar mais a equação para poder julgar o item. Estou preso neste exercício há alguns dias, e qualquer ajuda será apreciada.
Obrigado.
-
FelipeScheidemantel
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Mar 19, 2009 18:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Relação entre cordas entre dois pontos de retas.
por janderson77 » Seg Dez 02, 2013 12:00
- 0 Respostas
- 1968 Exibições
- Última mensagem por janderson77

Seg Dez 02, 2013 12:00
Trigonometria
-
- relação entre x e y
por Apotema » Qua Nov 18, 2009 19:57
- 4 Respostas
- 5683 Exibições
- Última mensagem por Apotema

Seg Nov 23, 2009 08:12
Trigonometria
-
- relação entre a e b
por jose henrique » Seg Set 13, 2010 09:31
- 3 Respostas
- 4565 Exibições
- Última mensagem por Elcioschin

Ter Set 14, 2010 10:45
Álgebra Elementar
-
- [relação entre PA e PG]
por JKS » Qui Abr 11, 2013 01:11
- 2 Respostas
- 3346 Exibições
- Última mensagem por JKS

Dom Abr 21, 2013 18:07
Progressões
-
- relação entre conjuntos
por Julivanny » Sex Set 12, 2008 12:46
- 1 Respostas
- 3359 Exibições
- Última mensagem por admin

Ter Set 16, 2008 17:44
Conjuntos
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.