por LuizCarlos » Ter Ago 16, 2011 15:34
Existe alguma maneira de equacionar os problemas ?
Tem problema que eu consigo equacionar, tem outros que eu fico pensando, pensando, pensando e não sei como equacionar !
Estou fazendo uns problemas sobre sistema de equações do 1° grau com duas incognitas, alguns eu consegui equacionar e chegar a solução !
Porem tem dois aqui, que não estou conseguindo !
No Cine Estrela há dois tipos de ingressos: meia entrada e inteira. A meia entrada custa R$ 1,50 e a inteira custa R$ 3,00. No final de uma sessão, o caixa registrou R$ 210,00 para um total de 100 pagantes. Quantas pessoas pagaram ingressos de meia entrada e quantas pagaram ingressos de inteira nessa sessão?
-
LuizCarlos
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Ter Jun 21, 2011 20:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 1º ano do segundo grau
- Andamento: cursando
por Neperiano » Ter Ago 16, 2011 19:56
Ola
Não sei se da, mas tente algo assim
f(x) = (x/2).1,50 + x.3
x/2 - meia entrada
x - entrada
Ou usa y no lugar de x
f(x)=(y/2).1,5 + x.3
Coloca 200 no f(x) e resolve por baskara.
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por DanielFerreira » Dom Abr 01, 2012 17:09
LuizCarlos escreveu:No Cine Estrela há dois tipos de ingressos: meia entrada e inteira. A meia entrada custa R$ 1,50 e a inteira custa R$ 3,00. No final de uma sessão, o caixa registrou R$ 210,00 para um total de 100 pagantes. Quantas pessoas pagaram ingressos de meia entrada e quantas pagaram ingressos de inteira nessa sessão?
Quantidade de pessoas que pagaram meia entrada: x
Quantidade de pessoas que pagaram inteira: y
CONDIÇÃO I:1,5x + 3y = 210
CONDIÇÃO II:x + y = 100
y = 100 - x
Substituindo II em I:


x = 60y = 100 - x
y = 40
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Como equacionar essa questão ?
por LuizCarlos » Qua Ago 17, 2011 16:23
- 2 Respostas
- 2325 Exibições
- Última mensagem por LuizCarlos

Qui Ago 18, 2011 14:16
Álgebra Elementar
-
- falta alguma coisa
por johnny » Sex Out 22, 2010 16:57
- 3 Respostas
- 2083 Exibições
- Última mensagem por MarceloFantini

Sex Out 22, 2010 17:23
Cálculo: Limites, Derivadas e Integrais
-
- Expressões tem alguma diferença?
por teilom » Dom Ago 12, 2012 21:34
- 1 Respostas
- 1604 Exibições
- Última mensagem por MarceloFantini

Seg Ago 13, 2012 08:41
Álgebra Elementar
-
- Cálculo de sin(x+y) UMA MANEIRA FÁCIL DE RESOLVER
por Taah » Ter Mar 30, 2010 09:02
- 1 Respostas
- 6431 Exibições
- Última mensagem por paulo87

Sáb Fev 19, 2011 12:26
Desafios Difíceis
-
- Maneira mais eficiente para multiplicacao de fracoes algeb.
por lucas7 » Dom Fev 20, 2011 07:54
- 7 Respostas
- 3658 Exibições
- Última mensagem por lucas7

Seg Fev 21, 2011 16:38
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.