• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Teoria dos Anéis - Dúvida

Teoria dos Anéis - Dúvida

Mensagempor m0x0 » Seg Jul 25, 2011 21:48

Boas a todos,

Estou a estudar Teoria dos Anéis e cheguei a uma dúvida:

Seja A o conjunto dos números reais da forma: a+b\sqrt[2]{2}, com a e b inteiros e com as duas operações habituais (adição e produto):

a) Mostrar que A é um subanel do corpo dos complexos.

Com (a+b\sqrt[2]{2})\in\Re e ({a}_{1}+{b}_{1}\sqrt[2]{2})\in\Re temos:

(a+b\sqrt[2]{2})+({a}_{1}+{b}_{1}\sqrt[2]{2})=((a+{a}_{1})+\sqrt[2]{2}(b+{b}_{1}))\in\Re

(a+b\sqrt[2]{2})({a}_{1}+{b}_{1}\sqrt[2]{2})=((a{a}_{1}+2b{b}_{1})+\sqrt[2]{2}(a{b}_{1}+{a}_{1}b))\in\Re

Logo A é subanel do corpo dos complexos.

b) Será A um ideal do mesmo corpo?

Com (a+b\sqrt[2]{2})\in\Re e ({a}_{1}+{b}_{1}\sqrt[2]{-2})\inComplexos temos:

(a+b\sqrt[2]{2})({a}_{1}+{b}_{1}\sqrt[2]{-2})=((a{a}_{1}-2b{b}_{1})+\sqrt[2]{-2}(a{b}_{1}+{a}_{1}b))\inComplexos

Logo A não é ideal dos Complexos.

c) Averiguar se A é um domínio de integridade, se é corpo e qual o ideal do anel A gerado por\sqrt[2]{2}

Para ser Domínio de Integridade, não pode ter divisores de zero, então: (a+b\sqrt[2]{2})({a}_{1}+{b}_{1}\sqrt[2]{2})=0\Rightarrow(a+b\sqrt[2]{2})=0\cup({a}_{1}+{b}_{1}\sqrt[2]{2})=0

E para ser Corpo, para todo o elemento não nulo, tem que ter invertível, então: (a+b\sqrt[2]{2}){(a+b\sqrt[2]{2})^{-1}=1

O ideal gerado será: (a+b\sqrt[2]{2})\sqrt[2]{2}=2b+a\sqrt[2]{2}, ou seja, serão os números da forma 2a+b\sqrt[2]{2} ou <2A> ?!

(E não passo daqui.. agradecia ajuda se possível nas demonstrações se é Domínio de Integridade, se é Corpo e como se descobre o ideal) :(
m0x0
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qui Jul 21, 2011 15:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)