por guillcn » Qui Abr 07, 2011 20:42
O exercicio e o seguinnte :
O valor de real A,para que se tenha
![A . \sqrt[2]{3} = {\left(2 + \sqrt[2]{3} \right)}^{3}-{\left(2 - \sqrt[2]{3} \right)}^{3} A . \sqrt[2]{3} = {\left(2 + \sqrt[2]{3} \right)}^{3}-{\left(2 - \sqrt[2]{3} \right)}^{3}](/latexrender/pictures/72388fd9be74a5d2281a2f5b3852a9c9.png)
entao passei raiz para o outro lado
![A = \frac{{\left(2 + \sqrt[2]{3} \right)}^{3}-{\left(2 - \sqrt[2]{3} \right)}^{3}}{\sqrt[2]{3}} A = \frac{{\left(2 + \sqrt[2]{3} \right)}^{3}-{\left(2 - \sqrt[2]{3} \right)}^{3}}{\sqrt[2]{3}}](/latexrender/pictures/c84b1397d96248a77ae27b62580f5353.png)
porem quando se tira o cubo perfeito das partes sempre resta uma raiz de tres
![\frac{\left(8+12\sqrt[2]{3}+18 + 9 \right)\left(8 - 12\sqrt[2]{3}+ 18 - 9\right)}{\sqrt[2]{3}} \frac{\left(8+12\sqrt[2]{3}+18 + 9 \right)\left(8 - 12\sqrt[2]{3}+ 18 - 9\right)}{\sqrt[2]{3}}](/latexrender/pictures/4dc2551835be4220388c45b56b2fd9f9.png)
=
![\frac{\left(35 + 12\sqrt[2]{3}\right)-\left(17 - 12\sqrt[2]{3}\right) }{\sqrt[2]{3}} \frac{\left(35 + 12\sqrt[2]{3}\right)-\left(17 - 12\sqrt[2]{3}\right) }{\sqrt[2]{3}}](/latexrender/pictures/f02a543df354c80b3b4cd5734bf8654b.png)
como posso resolver esse problema? obrigado pela atençao.
-
guillcn
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Ter Abr 05, 2011 16:36
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por FilipeCaceres » Qui Abr 07, 2011 21:10
Quando você quisser alterar alguma coisa no teu post vá em editar no próprio post que você colocou, não é necessário criar outro apenas para mostrar as mudanças.
Veja a dica em
viewtopic.php?f=106&t=4346 Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por guillcn » Qui Abr 07, 2011 21:13
ok foi um erro no meu pc .axei q naum tivesse enviado o primeiro topico.
-
guillcn
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Ter Abr 05, 2011 16:36
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- cubo perfeito
por guillcn » Qui Abr 07, 2011 20:40
- 3 Respostas
- 1630 Exibições
- Última mensagem por FilipeCaceres

Qui Abr 07, 2011 21:16
Álgebra Elementar
-
- Quadrado Perfeito?
por Molina » Qui Nov 25, 2010 17:00
- 6 Respostas
- 6463 Exibições
- Última mensagem por pedroaugustox47

Sex Mai 11, 2012 16:28
Desafios Difíceis
-
- Quadrado perfeito
por guillcn » Ter Abr 05, 2011 19:15
- 2 Respostas
- 2358 Exibições
- Última mensagem por guillcn

Ter Abr 05, 2011 19:54
Álgebra Elementar
-
- Ajuda com quadrado perfeito
por joaoalbertotb » Ter Ago 25, 2009 13:01
- 2 Respostas
- 2184 Exibições
- Última mensagem por joaoalbertotb

Qua Ago 26, 2009 12:20
Trigonometria
-
- Trinômio Quadrado Perfeito
por Balanar » Ter Ago 10, 2010 22:48
- 2 Respostas
- 4813 Exibições
- Última mensagem por DanielFerreira

Dom Jan 08, 2012 18:05
Desafios Difíceis
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.