• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Somatório

Somatório

Mensagempor Abelardo » Sex Abr 01, 2011 01:06

Estou estudando uma apostila sobre somatório e quando estava olhando as demonstrações das propriedades operatórias da soma (subtração) mas para todas as outras o livro propôs que fizéssemos o restante.

Tentei demonstrar, mas peço que apontem os ''erros'' cometidos, como já espero que hajam vários kkkk.

\sum_{i=1}^{n}F(i)\sum_{i=1}^{n}G(i) \neq  \sum_{i=1}^{n}F(i)G(i)

Sei que:

\sum_{i=1}^{n}F(i)=F(1)+F(2)+F(3)+F(4)+...+F(n)

\sum_{i=1}^{n}G(i)=G(1)+G(2)+G(3)+G(4)+...+G(n)

\sum_{i=1}^{n}F(i)G(i)=F(1)G(1)+F(2)G(2)+F(3)G(3)+F(4)G(4)+...+F(n)G(n)






Chamei \sum_{i=1}^{n}F(i)G(i) de \Omega

Apliquei a distributiva em \sum_{i=1}^{n}F(i)\sum_{i=1}^{n}G(i) e obtive a igualdade

F(1)[G(1)+G(2)+G(3)+...+G(n)]+F(2)[G(1)+G(2)+G(3)+...+G(n)]+...+F(n)[G(1)+G(2)+G(3)+...+G(n)].

Percebi que \Omega está contido em \sum_{i=1}^{n}F(i)\sum_{i=1}^{n}G(i).

\sum_{i=1}^{n}F(i)\sum_{i=1}^{n}G(i)=\Omega + F(1)[G(2)+G(3)+G(4)+...+G(n)]+F(2)[G(1)+G(3)+G(4)+...+G(n)]+...+F(n)[G(1)+G(2)+G(3)+...+G(n-1)]


Então posso concluir que \sum_{i=1}^{n}F(i)\sum_{i=1}^{n}G(i) \neq \sum_{i=1}^{n}F(i)G(i)?
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)