• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Produtos Notáveis

Produtos Notáveis

Mensagempor Du21 » Ter Mar 29, 2011 20:31

Galera, preciso de ajuda!

a = 1 + \sqrt[2]{2}
b = 1 - \sqrt[2]{2}

Sejam os valores de a e b, então {a}^{3} + {b}^{3} -  {a}^{3}.{b}^{3} é igual a:

{a}^{3}.{b}^{3} =  {{\left(a + b \right)}^{3} \Rightarrow \left(1 + \sqrt[2]{2} + 1 - \sqrt[2]{2}\right)}^{3} \Rightarrow {\left(2 \right)}^{3} \Rightarrow 8

{a}^{3} + {b}^{3} \Rightarrow \left(a + b \right).\left({a}^{2} - ab + {b}^{2}\right) \Rightarrow
\left(1 + \sqrt[2]{2} + 1 - \sqrt[2]{2}\right).\left[ {\left({1+\sqrt[2]{2} \right)}^{2} - \left(1+\sqrt[2]{2} \right).\left(1-\sqrt[2]{2} \right) + {\left(1-\sqrt[2]{2} \right)}^{2}\right] \Rightarrow
2.7 = 14

então 14 - 8 = 6

Fiz assim mas o gabarito diz que a resposta correta é 15, e eu não sei em que parte eu errei
Du21
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mar 04, 2011 20:19
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: formado

Re: Produtos Notáveis

Mensagempor Molina » Ter Mar 29, 2011 20:50

Boa noite, Du.

Você está se confundindo nesta parte, veja:

Du21 escreveu:{a}^{3}.{b}^{3} =  {{\left(a + b \right)}^{3}


Na verdade, temos que:

{a}^{3}.{b}^{3} =  {{\left(a.b \right)}^{3}

Daí fecha certinho.

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Produtos Notáveis

Mensagempor Du21 » Ter Mar 29, 2011 21:02

poxa que erro idiota! :oops:
valeu pela dica Molina, consegui terminar
abração cara
Du21
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mar 04, 2011 20:19
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.