• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida - Conjuntos

Dúvida - Conjuntos

Mensagempor Mirian » Qua Mar 23, 2011 17:11

52 pessoas discutem a preferência por dois produtos A e B, entre outros e conclui-se que o número de pessoas que gostavam de B era:
I - O quádruplo do número de pessoas que gostavam de A e B;
II - O dobro do número de pessoas que gostavam de A;
III - A metade do número de pessoas que não gostavam de A nem de B.
Nestas condições, o número de pessoas que não gostavam dos dois produtos é igual a:

SOLUÇÃO:

Considere a figura abaixo, onde estão representados os conjuntos A e B, e a quantidade de elementos x, y, z e w.

(NÃO DÁ PARA COLOCAR A FIGURA )

Pelo enunciado do problema, poderemos escrever:
x+y+z+w = 52
y+z = 4y
y+z = 2(x+y)
y+z = w/2
Desenvolvendo e simplificando, vem:
x+y+z+w = 52 (eq.1)
z = 3y (eq. 2)
z = 2x + y (eq. 3)
w = 2y + 2z (eq. 4)

Substituindo o valor de z da eq. 2 na eq. 3, vem: x = y
Podemos também escrever: w = 2y + 2(3y) = 8y
Expressando a eq. 1 em função de y, vem:
y + y + 3y + 8y = 52 e, daí vem: 13y = 52, de onde vem y = 4.

Temos então por simples substituição:
z = 3y = 12
x = y = 4
w = 8y = 32

A partir daí, é que vem a sutileza do problema. Vejamos:
O problema pede para determinar o número de pessoas que não gostam dos produtos A e B. O conectivo e indica que devemos excluir os elementos da interseção AÇ B. Portanto, a resposta procurada será igual a:
w + x + z = 32 + 4 + 12 = 48 pessoas.

DÚVIDAAA!
A resposta seria 32 (como muitos acham como resultado)EU SERIA +/- ESSA PESSOA, se a pergunta fosse:
Quantas pessoas não gostam do produto A ou do produto B?

pode ser besteira, mas...
bom, meu pensamento é que o y é o que dá preferência aos dois produtos! *-)
e a perguntam é que NÃO gostam de B
então..seria w+x -> 36


AGRADEÇO DESDE JÁ! :y:
Mirian
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Mar 23, 2011 16:53
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Dúvida - Conjuntos

Mensagempor Fabricio dalla » Qui Mar 24, 2011 09:05

olá Mirian
bom eu estava olhando sua resolução e percebi que vc tem que colocar o que representa cada letra! porque fica dificil entender por alguem de "fora" acompanhar seu raciocinio

A resposta seria 32 (como muitos acham como resultado)EU SERIA +/- ESSA PESSOA, se a pergunta fosse:
Quantas pessoas não gostam do produto A ou do produto B?

ue! e porque que estaria errado em perguntar o número de pessoas que não gostavam dos dois produtos ?

se a pergunta fosse Quantas pessoas não gostam do produto A ou do produto B.EU acredito que seria a msm coisa pois o conectivo "ou" que vc coloco dá a ideia de união msm
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Dúvida - Conjuntos

Mensagempor LuizAquino » Qui Mar 24, 2011 10:42

Mirian escreveu:52 pessoas discutem a preferência por dois produtos A e B, entre outros e conclui-se que o número de pessoas que gostavam de B era:
I - O quádruplo do número de pessoas que gostavam de A e B;
II - O dobro do número de pessoas que gostavam de A;
III - A metade do número de pessoas que não gostavam de A nem de B.
Nestas condições, o número de pessoas que não gostavam dos dois produtos é igual a:


Eis um diagrama de Venn para o exercício.
diagrama-venn.png
diagrama-venn.png (4 KiB) Exibido 6862 vezes


Temos que x+x+3x+8x=52, de onde obtemos que x=4.

Lembre-se que se uma pessoa gosta apenas de um dos produtos, então não podemos dizer que ela gosta dos dois produtos.

Desse modo, o número de pessoas que não gostam dos dois produtos é x+3x+8x=48.

Mirian escreveu:DÚVIDAAA!
A resposta seria 32 (como muitos acham como resultado)EU SERIA +/- ESSA PESSOA, se a pergunta fosse:
Quantas pessoas não gostam do produto A ou do produto B?

Correto. Basta lembrar que "A ou B" significa A\cup B. Portanto, nesse exercício, do universo de 52 pessoas devemos tirar (x+x+3x), o que resta apenas 8x.

Mirian escreveu:(NÃO DÁ PARA COLOCAR A FIGURA )

É claro que dá! Leia como no tópico:
Re: Poliedros
viewtopic.php?f=119&t=3738&p=12173#p12159
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?