• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Álgebra: classes de equivalência

Álgebra: classes de equivalência

Mensagempor Caeros » Sex Mar 18, 2011 20:59

Seja R uma relação sobre Q definida da forma seguinte xRy ? x – y ? Z. Provar que R é uma relação de equivalência e descrever a classe [1].

Bem entendo que é uma relação de equivalência:
(1,4) ? R, pois, 1-4 = -3 ? Z;
(4,1) ? R, pois, 4-1= 3 ? Z;
(1,1) ? R, pois, 1-1=0 ? Z.
Mas em relação a descrever classes de [1] só compreendo que todos os números inteiros podem manter relação de equivalência com este, então [1]=Z.
Então gostaria dos colegas derem seus parecerem se concordam com esta resposta ou se há uma resposta melhor, mais completa???? :?: :?: :?: :?: ;)
Caeros
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Seg Mai 25, 2009 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.