• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão UFMG

Questão UFMG

Mensagempor Guilherme Carvalho » Qui Mar 03, 2011 13:03

Galera me ajuda com essa questão!!!!!!!!!


(UFMG) Sejam a, b e c números reais é positivos, tais que \frac{ab}{b+c}=\frac{b^2-bc}{a} . Então é correto afirmar que


a) a²= b²+c²
b) b= a+c
c) b²= a²+c²
d) a= b+c
Guilherme Carvalho
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Mar 03, 2011 12:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Questão UFMG

Mensagempor Elcioschin » Qui Mar 03, 2011 13:27

ab/(b + c) = (b² - bc)/a ----> Colocando b em evidência no 2º membro:

ab/(b + c) = b*(b - c)/a ----> Dividindo por b, já que b > 0:

a/(b + c) = (b - c)/a

a² = (b + c)*(b - c)

a² = b² - c²

b² = a² + c² ----> C
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.